
OWASP 2023 TOP 10 API Vulnerabilities
and mitigations

About me:

• Network Security and
Cybersecurity consultant
with more than 10 years of
experience in Networking,
Network Security and
Cybersecurity.

• Holder of Comptia Pentest+
and Comptia CASP+
certifications and many other
IT vendor sertifications.

• Master’s degree in
Telecommunications.

Content:

• API Basics

• Top 10 API vulnerabilities
and their mitigation

• Demo Session

API Basics

API Basics
Application programming interface (API) is a connection between computers or
between computer programs.

Nowadays API communication is even more common than the communication
between users with web browsers and custom app agent clients (usually when using
mobile phones) and the web applications.

Many Web applications integrate 3rth party functions, using API, like for example
subscribing and ingesting weather report information, using API and so on.

API Basics
API traffic is different than the normal web traffic, even if in most cases it
uses the same underlying protocols as HTTPS/HTTP. API clients usually do
not support java scripts or cookies, so attacks based on JavaScript injections
or cookie manipulations do not affect them, but this is also true that
defenses based on javascripts or cookies also can’t be used!

API Basics

API data is usually in XML or
JSON formats.
The newer format is JSON, so
it is currently more prevalent.
The different API data formats
have different vulnerabilities
and attacks that can make
use of those vulnerabilities,
so this must be considered.
There is even newer API
format, called GraphQL!

API Basics
SOAP API was the old API model,
that used XML for data format
while the current 2 new API models
are GraphQL and REST API and
they use JSON. GraphQL less URL
endpoints as it uses HTTP POST
body that has query section that
describes the requested resource
and offers it’s own security risks
and benefits.

qRPC is a new way to send
function calls remotely but it will
take time this to become popular
and this API is used most internally
in a microservice between the
components. I see this being a big
place for attacks in the future ☺

API Basics
Even not so much related to security nowadays there are two API models
called imperative and declarative API. The difference is that for declarative
API that is the newer less domain knowledge is needed of the end system
to configure it as the declaration message declares what the controller
expects and not a specific command.

API Basics
API endpoints that are also the url’s we
use in our web browsers are well
documented in the form of API
specification that is called
Swagger(OpenAPI2.x) or OpenAPI3.x.

As there are instances where streaming
bidirectional API traffic is needed, where
the servers can also initialize requests,
there is a specification for this kind of
communication, called AyncAPI.
Protocols that can make use of this
are WebSocket or MQTT for IOT devices
API communication.

API BasicsOpenAPI specifications are
used, so that developers that
can use the API to know how
program their API application
client, so it is for of API
documentation.

The secondary purpose is for
security as the spec can
describe which endpoints
exist(this protects again so-
called shadow API
undocumented endpoints),
what headers and
parameters should exist in
the request and what should
be their value and even what
is Security Authentication for
the API!

API Basics
API Authentication and are authorizations
in most cases are different than the
normal web authentication,. For
example, session cookie that is used
after the initial user authentication in
most cases can’t be used. Old ways to
authenticate API and users was the basic
authentication for every request but
nowadays things like opaque and JWT
tokens are used! JWT CA certificate
signed token is given after the initial
authentication, and it holds information
that not only allows the API access but
also enforces authorization using claims
that can be checked if the users should
have access to an explicit API endpoint.
Opaque tokens are just random strings
that have to exchanged with AS
(Authorization server) to get the API
access levels in the form of another
token, called introspect token.

API Basics

OAuth2.0 is one of the most
popular protocols for JWT or
Opaque tokens.

OpenID is an authentication
protocol used for signing users
into client applications. The
purpose is user authentication.
OAuth is an authorization
protocol used for providing client
applications delegated access to
server resources on behalf of a
user. The purpose is delegated
authorization. OpenID is an
extension for users to trigger to
apps to use Oauth.

API Basics
Usually for good API security
devices added. API
Gateways can translate
between internal and
external API protocols,
enforce authentication and
authorization of the API
traffic with federation
services like for example
Azure AD and even enforce
the OpenAPI scheme. API
Gateways can also translate
between external protocol
like REST API and internal,
for example qRPC
Web Application Firewalls
can provide signature
protection, DOS and rate
limiting for the API traffic,
like they do for normal user
traffic.

API Basics

Nowadays a cloud-based
solution like Web
Application and API
Protection (WAAP)
becomes more and more
popular that combines
API gateway and a WAF
with Machine Learning
(ML) to do things like
OpenAPI scheme auto
discovery from the seen
traffic, auto DOS rate
limiting and blocking of
malicious traffic and
much more.

Top 10 API vulnerabilities and their
mitigation

Top 10 API vulnerabilities and their mitigation

OWASP API 2019 vs OWASP API 2023. API are still vulnerable to
injection attacks but as WAF products are now more advanced and
block most of command or sql injection or other injection attacks.

Top 10 API vulnerabilities and their mitigation

• Broken object level authorization (API1:2023)

Broken object level authorization occurs when authorization rules that
dictate which object can be accessed by which users do not exist or
are not applied properly. This allows attackers to manipulate API
request parameters to access objects to which they are not authorized
to access.

Top 10 API vulnerabilities and their mitigation
In the following attack scenario, the attacker
manipulates the userid value in the URI path to
retrieve user information from other users' account.

1. The attacker uses a legitimate account and sends
the following API request to retrieve their user
information.GET
https://api.example.com/v2/userid-1a-
1234/userinfo
Cookie: _userId=userid-1a-1234

2. The attacker creates a second legitimate account,
and using the userid, the attacker guesses and
enumerates different userid values. They use a
script or tool to send API requests, testing a range
of userids, and receive sensitive information of
other users.GET
https://api.example.com/v2/userid-1a-
1111/userinfo
Cookie: _userId=userid-1a-1111
GET https://api.example.com/v2/userid-zz-
9999/userinfo
Cookie: _userId=userid-zz-9999

3. They expand the scope of the attack by
manipulating the API request to delete
users.DELETE https://api.example.com/v2/userid-
1a-1111
Cookie: _userId=userid-zz-9999

Top 10 API vulnerabilities and their mitigation
• To protect your APIs, best practices recommend the following:
• implement authorization mechanisms to check if the logged-in user has access to

perform the requested action on the record in every function that uses an input from
the client to access a record in the database.

• Be extremely methodical and precise when testing the authorization mechanisms to
ensure every API endpoint is secured against attacks on every object possible according
to business requirements.

• Securing against broken object level authorization attacks is about more than just
rolling out fixes at the source code level. It involves implementing a series of defenses
at each layer in the authentication and authorization process.

The protections usually are implemented on the application server but this can be
delegated to a API gateway device that can be integrated with a central IdP solution for
authentication and authorization using federation services like OAuth, OpenID connect,
JWT, and so on.

Top 10 API vulnerabilities and their mitigation

• Broken authentication (API2:2023)

Broken authentication occurs when the API authentication mechanisms
are lacking or are not implemented correctly, allowing attackers to gain
complete control of other users' accounts in the system, read their
personal data, and perform sensitive actions on their behalf. Attacks
that target authentication endpoints include brute-force, credential
stuffing, and credential cracking.

Top 10 API vulnerabilities and their mitigation

In the following scenario, an attacker
performs credential stuffing attacks against
different API endpoints. Two authentication
endpoints do not have proper
authentication mechanisms implemented.

1. The attacker obtains a password database
from a hacker forum.

2. Since a weak hashing algorithm was used
to encrypt passwords, the attacker can
expose the user credentials.

3. The attacker uses credential stuffing tools
to test credential pairs on different API
endpoints.

4. If the login is successful, the attacker
knows they have a set of valid credentials.

Top 10 API vulnerabilities and their mitigation
To protect your APIs, best practices recommend that you use industry standard
authentication mechanisms that include multi-factor, brute force protection, and account
lockout to secure all API endpoints and authentication flows.

To secure your APIs against broken authentication attacks, you should use industry
standard authentication methods. Your authentication mechanism should also be able to
implement step-up authentication when the conditions or criteria for authentication
changes. Examples of good authentication options are:

- Multi-factor authentication through RADIUS authentication

- Certificate-based authentication

- Password-based authentication like LDAP, HTTP, Radius, Active Directory and so on.

Top 10 API vulnerabilities and their mitigation

• Broken object property level authorization (API3:2023)
Broken object property level authorization occurs when the API is
designed to return all properties of an object without considering the
sensitivities of each property. This leads to the API returning more data
than required by the end user, thereby increasing the risk of exposure
of sensitive data.

Top 10 API vulnerabilities and their mitigation

In the following scenario, an attacker
exploits excessive data exposure from
the API server to obtain an internal
application ID and uses it to illegally
escalate their own account privileges:

1.An attacker sends a legitimate API
request to request their account
details.

2.The API server, relying on the front
end to filter sensitive data, returns
all properties of the account object,
including an internal application ID
which is applicable only for
administrator accounts.

3.The attacker adds
the user.admin, user.role parameter
s to the JSON user object in the API
request.

Top 10 API vulnerabilities and their mitigation

• Most traditional security tools lack the capability to identify which data is sensitive
from the legitimate data returned by the API. Some tools may be able to detect and
mask or block well-defined sensitive data types, such as credit card numbers (CCNs) or
social security numbers (SSNs). When designing an API, best practices recommend
that you never rely on the client side to filter sensitive data and always review the
responses directly from the API to make sure they contain only legitimate, required
data. For example, ensure that the API returns specific properties that are required
instead of all properties.

• In addition, to prevent attackers from illegally modifying sensitive object properties,
best practices recommend that you define a clear and comprehensive allow/deny list
of all parameters, objects, and properties and examine and validate all client inputs
against the list to ensure all client requests conform to your application schema.

WAF systems usually can block or mask responses that have data matching patterns of
known sensitive data, like limited Data Loss prevention (DLP) systems. Also, Openapi
spec can document what is accepted in JSON or XML requests and API Gateway with
ingested API specification can enforce the OpenAPI spec.

Top 10 API vulnerabilities and their mitigation

• Unrestricted resource consumption (API4:2023)

Unrestricted resource consumption occurs when there are
inadequate restrictions on the number, content, and type of
requests made by users of the API.

Top 10 API vulnerabilities and their mitigation

In the following scenario an
attacker manipulates the content
of the API request, leading to a
server response with an
excessively large payload, resulting
in slow application performance.

1. An attacker sends a legitimate
API request for a single page
with 200 items.

2. The attacker modifies the page
size, increasing it from 200 to
200,000.

This increase causes the
application to return an excessive
number of items in response to
the query, consuming excessive
server resources.

Top 10 API vulnerabilities and their mitigation

To protect your APIs, best practices recommend that you implement limits (CPU,
memory, processes, and so on) on how clients can call your APIs and examine
and validate client queries to ensure query strings and request that body
parameters conform to your application schema, maximum size, and other
requirements.

API Gateways can enforce strong rate limits based not only on ip addresses but
also based on entities such as Client ID, User Group, Client IP address, User
Name, multiple values (like User Group and User Name), or a per-flow variable
name. This allows you to specifically group API requests by user, type of request,
or any identifiable characteristics.

Top 10 API vulnerabilities and their mitigation

• Broken function level authorization (API5:2023)
Broken function level authorization occurs when API user functions are
not clearly defined or are too complex and, as a result, authorization
checks are not completely implemented based on clear user group and
roles.

Top 10 API vulnerabilities and their mitigation

In the following scenario, the
attacker buys all the stock of a high-
demand product and resells it at a
higher price:
1.An attacker uses code to

automatically buy the next-
generation release of a popular
new shoe.

2.Since the API doesn't implement
the appropriate protection, the
attacker uses a bot to run the code
and buy up the entire stock before
other legitimate users. The attacker
later resells the shoes at a profit.

Top 10 API vulnerabilities and their mitigation

To protect your APIs, best practices recommend that you first plan and have a
good overall view of the user and group hierarchy of your organization so that
you can review and secure all API endpoints and authorization flows and deny
all access, by default, requiring explicit grants to specific roles for access to
every function.

API gateway proxy is your first line of defense and is well positioned to examine
API requests' URI paths, HTTP content, and JWT tokens, and it communicates
with other application servers for you to implement a set of complete
authorization checks to secure your APIs. Authorization mechanisms to validate
that the API calls are authorized to perform what they are requesting for.

Top 10 API vulnerabilities and their mitigation

• Unrestricted access to sensitive business flows (API6:2023)
Unrestricted access to sensitive business flows occurs when an API
exposes a business flow without regard to whether excessive access to
the flow may harm the business.

Top 10 API vulnerabilities and their mitigation

In the following scenario, the
attacker buys all the stock of a
high-demand product and resells
it at a higher price:

1.An attacker uses code to
automatically buy the next-
generation release of a popular
new shoe.

2.Since the API doesn't
implement the appropriate
protection, the attacker uses a
bot to run the code and buy up
the entire stock before other
legitimate users. The attacker
later resells the shoes at a
profit.

Top 10 API vulnerabilities and their mitigation

Best practices recommend that you identify critical business flows and
implement request validation mechanisms to protect them attackers
using them excessively.

Using Rate-Limiting and API anomaly detections as to block the bots. As
API traffic as mentioned usually does not support cookies and
javascripts bot protections based on javascripts can’t be used, so
Machine Learning (ML) systems that detect API anomalies and DOS
systems that also use DOS ML to auto trigger DOS rate limiting or
blocking protections will be useful.

Top 10 API vulnerabilities and their mitigation

• Server side request forgery (API7:2023)
Server side request forgery attack occurs when an API is fetching a
remote resource without validating the user-supplied URL.

Top 10 API vulnerabilities and their mitigation

In the following attack scenario, an attacker
exploits an API that makes calls to an internal
resource on the same network.

1.The attacker identifies an API that is
vulnerable to SSRF attacks.

2.The attacker sends a forged request to the
vulnerable API and targets the internal
resource that resides on the same network.

3.The API sends the forged request to the
internal resource and receives a response
with the requested data.

4.The API sends the response data back to the
attacker, bypassing detection.

Top 10 API vulnerabilities and their mitigation

• To protect your APIs against server-side request forgery attacks, you should consider the following
recommended best practices:

• Isolate the resource fetching mechanism in your network. Typically resource fetching mechanism should
not involve internal resource/destination.

• Ensure all client-supplied input are validated and sanitized.

• Disable HTTP redirections if possible.

• Use an accept list, if possible, to limit the following:
• The location from which remote users are expected to download and access resources
• URL schemes and ports
• Accepted media types for a functionality

• Use a well-tested and maintained URL parser to avoid issues caused by URL parsing inconsistencies.

• Avoid sending raw responses to client.

In most WAF solutions, you can use the SSRF protection feature to protect your APIs against SSRF attacks. You
should identify parameters of data type URI that are subjected to SSRF attacks and explicitly define the URI
parameters in your API specification or security policy. If you don’t have prebuild OpenAPI specification the
cloud based SAAS offerings can do API discovery and discover , build and enforce the API schema.

Top 10 API vulnerabilities and their mitigation

• Improper inventory management (API9:2023)
Improper inventory management vulnerabilities can occur when
security best practices are not followed during the API development
cycle. Not following security best practices in the design phase may
lead to vulnerabilities such as old API versions, unpatched systems,
outdated API documentation, and unnecessarily exposed API
endpoints/

Top 10 API vulnerabilities and their mitigation

In the following scenario the attacker
finds old, unpatched API endpoints
that are still connected to the
production database.

1.The attacker uses an automated
scanning tool to search production
APIs on the target system.

2.The scanning tool finds old,
unprotected API resources.

3.Since the old API is not running the
latest code, the attacker uses
injection attacks to compromise the
production database.

Top 10 API vulnerabilities and their mitigation

To protect your APIs, best practices recommend that you implement a
repeatable process that is audited for security when setting up and
configuring your environment. Include, in your configurations, the F5
features listed in the following tables.

You should have a simple, clear, and repeatable process when updating
to new API versions. This process makes it clear which environment the
API is running, who has access to the production and test servers,
which API version is running, and so on.

API Gateways can enforce schema and this way block “shadow” API
endpoints that could be the older endpoint version as well.

Top 10 API vulnerabilities and their mitigation

Unsafe consumption of APIs (API10:2023)

Unsafe consumption of APIs occurs when the back-end systems or API
implementations that have integration with external or third-party APIs
do not verify the endpoints or validate/sanitize their inputs

Top 10 API vulnerabilities and their mitigation
In the following attack scenario, an attacker exploits a
third-party API that your back-end system or API
implementation is integrated with.

1. The attacker identifies a third-party API that is
vulnerable and compromises it.

2. The attacker uses the third-party API to send
redirections to the attacker’s malicious site.

3. Your back-end system or API implementation sends a
request to the third-party API with payload that
contains sensitive information and receives a
redirection response from the third-party API.

4. Your backend system or API implementation then
follows the third-party API’s redirection without
validation and re-sends the request with the sensitive
information to the attacker’s malicious site.

5. The attacker now has a copy of the sensitive
information.

•

Top 10 API vulnerabilities and their mitigation

• To protect your APIs against unsafe consumption of APIs attacks, you should consider the
following recommended best practices:

• Evaluate the security posture and practices of the external or third-party API provider which
your back-end system or API implementation is integrated with.

• Ensure all data received from the external or third-party APIs is validated and sanitized
before using it.

• Use an allowlist, if possible, to limit where the external or third-party API provider may
redirect. If possible, do not follow redirection without validation.

• Implement timeouts when interacting with the external or third-party APIs.

• Limit resources when processing the responses from external or third-party APIs.

The primary weakness in unsafe API consumption comes from the interaction with third-party
API servers whose security posture could be beyond your control. Best practice therefore
recommends that you implement a zero trust environment to differentiate these third-party
APIs from your local APIs in the authentication, authorization, and validation workflow.

Demo session

For the demo https://tryhackme.com/ and
https://academy.hackthebox.com/ will be used that are websites
offering lab pentesing environments with minimal price around 10
dollars a month, so everyone can decide after the presentation to
play around ☺ They have OWASP API lab tutorials that will be
shown!

https://tryhackme.com/
https://academy.hackthebox.com/

Demo session

Injections
Injection
attacks even
if not in
OWASP
2023 can
still be an
issue like sql
injections,
xxe XML
injection or
json nosql
injections.

Extra useful links:

OWASP Top 10 API Security Risks – 2023 - OWASP API Security Top 10

OWASP API Security Top 10 Overview & Best Practices | F5

Article Detail

OWASP API Security Top 10 Course – Secure Your Web Apps

What Is OpenAPI? | Swagger Docs

Swagger UI

API Security Fundamentals Course

https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://www.f5.com/glossary/owasp-api-security-top-10
https://my.f5.com/manage/s/article/K000135973
https://www.youtube.com/watch?v=YYe0FdfdgDU
https://swagger.io/docs/specification/v3_0/about/
https://petstore3.swagger.io/
https://www.youtube.com/watch?v=o6d6BjX-Iys

Contacts:

(18) Nikolay Dimitrov | LinkedIn

THE END!

https://www.linkedin.com/in/nikolay-dimitrov-a26781b9/

	Slide 1: OWASP 2023 TOP 10 API Vulnerabilities and mitigations
	Slide 2: About me:
	Slide 3: Content:
	Slide 4: API Basics
	Slide 5: API Basics
	Slide 6: API Basics
	Slide 7: API Basics
	Slide 8: API Basics
	Slide 9: API Basics
	Slide 10: API Basics
	Slide 11: API Basics
	Slide 12: API Basics
	Slide 13: API Basics
	Slide 14: API Basics
	Slide 15: API Basics
	Slide 16: Top 10 API vulnerabilities and their mitigation
	Slide 17: Top 10 API vulnerabilities and their mitigation
	Slide 18: Top 10 API vulnerabilities and their mitigation
	Slide 19: Top 10 API vulnerabilities and their mitigation
	Slide 20: Top 10 API vulnerabilities and their mitigation
	Slide 21: Top 10 API vulnerabilities and their mitigation
	Slide 22: Top 10 API vulnerabilities and their mitigation
	Slide 23: Top 10 API vulnerabilities and their mitigation
	Slide 24: Top 10 API vulnerabilities and their mitigation
	Slide 25: Top 10 API vulnerabilities and their mitigation
	Slide 26: Top 10 API vulnerabilities and their mitigation
	Slide 27: Top 10 API vulnerabilities and their mitigation
	Slide 28: Top 10 API vulnerabilities and their mitigation
	Slide 29: Top 10 API vulnerabilities and their mitigation
	Slide 30: Top 10 API vulnerabilities and their mitigation
	Slide 31: Top 10 API vulnerabilities and their mitigation
	Slide 32: Top 10 API vulnerabilities and their mitigation
	Slide 33: Top 10 API vulnerabilities and their mitigation
	Slide 34: Top 10 API vulnerabilities and their mitigation
	Slide 35: Top 10 API vulnerabilities and their mitigation
	Slide 36: Top 10 API vulnerabilities and their mitigation
	Slide 37: Top 10 API vulnerabilities and their mitigation
	Slide 38: Top 10 API vulnerabilities and their mitigation
	Slide 39: Top 10 API vulnerabilities and their mitigation
	Slide 40: Top 10 API vulnerabilities and their mitigation
	Slide 41: Top 10 API vulnerabilities and their mitigation
	Slide 42: Top 10 API vulnerabilities and their mitigation
	Slide 43: Top 10 API vulnerabilities and their mitigation
	Slide 44: Top 10 API vulnerabilities and their mitigation
	Slide 45: Demo session
	Slide 46: Demo session
	Slide 47: Injections
	Slide 48: Extra useful links:
	Slide 49: Contacts: (18) Nikolay Dimitrov | LinkedIn

