
Autor Date

Exploiting
deserialization
vulnerabilities in recent
Java versions

OWASP Stuttgart 12/2024

Hans-Martin Münch 10 / 12 / 2024

cat /proc/self

I’m Hans-Martin Münch.

20 years of security experience, mainly in
the areas of penetration testing and
offensive security.

I did some offensive Java research in the
past and probably will also do it in the
future.

is a "no fluff" security outfit specialized on providing
penetration tests and technical security reviews.

Agenda

Exploiting Java Deserialization and JNDI
vulnerabilities is not what it used to be…

1. Deserialization
Fundamentals

2. Changes in Java 17

3. Remaining Gadgets

4. JNDI Fundamentals

5. Exploitation in 2024

6. Summary

01 Deserialization Fundamentals
Just covering the basics

Deserialization
Serialization allows to
transform objects from
memory into a stream of
bytes that can be stored (in a
file/database) or transferred
over the network.

Deserialization turns a
bytestream into an object.

Object

Stream of bytes

Stream of bytes

Object

Deserialization

Serialization

Database Network Files

Deserialization vulnerability

• Bytestream contains class information, which class will be deserialized

• Attackers control this information, forcing the deserialization of a

different object that the one that is expected

• Still one of the most common ways to get Remote Code Execution

Java Reflection

Reflection is a feature in the Java programming language. It allows an
executing Java program to examine or "introspect" upon itself, and
manipulate internal properties of the program. For example, it's possible for a
Java class to obtain the names of all its members and display them.

https://www.oracle.com/technical-resources/articles/java/javareflection.html

Java Reflection

By using Java Reflection, you can bypass Compiler encapsulation, for

example:

• Accessing and modifying private

• Making a protected class accessible

• Invoking (private and public) methods on arbitrary objects

Reflection
Here an example how to call a
private method of a class.

PrivateObject privateObject = new PrivateObject();

// get the internal method
Method internalMethod = PrivateObject.class.
getDeclaredMethod("internalMethod", null);

// Make it accessible
internalMethod.setAccessible(true);

// Invoke the method
String returnValue = (String) internalMethod.invoke(privateObject, null);

Deserialization Gadget or Gadget Chains

• A combination of serializable classes combined into an object

• When the object is deserialized, some "security relevant" side effects

happen

Deserialization Gadget or Gadget Chains

Custom readObject() method in class A

Invokes Method B in serialized Object Instance C

Invokes Method D in Object Instance E

Invokes Method F in Object Instance G"RCE Sink"

Entry Point

Ysoserial
The "Ysoserial" project is a
collection of publicly known
gadgets and gadget chains.

It further contains exploits
and bypasses for early filter
implementations.

https://github.com/frohoff/ys
oserial/

Remote Code Execution Sinks

Most Gadget Chains in Ysoserial use one of the following sinks to get

code execution:

• Invoke the Method getOutputProperties() in an

com.sun.org.apache.xalan.internal.xsltc.trax.Templa

tesImpl instance

• Outgoing JNDI Call to an attacker-controlled server

TemplatesImpl is The Perfect Sink Object

• Class is part of the JRE itself (no external library)

• Is serializable

• Contains a private "_bytecodes" field that contains Java Bytecode

• Calling the Method "getOutputProperties()" will invoke the

bytecode in the _bytecodes field

02 Changes in Java 17
Say Hello To Java Modules

The Java Module System

• With Project Jigsaw (Part of Java 9), Java introduced a Module system

• Gives you better control what parts of the Java Runtime Environment are

loaded

• Improves speed and security of the Java Runtime Environment (JRE)

Java Modules vs Reflection

• You can’t build a robust module system if it can be bypassed via reflection

• Java Modules allow you to define which code can be accessed from other

modules and which parts can be accessed through reflection

• This is done in the "module-info.class" file of a module

Module isolation now blocks external access to the

internal TemplatesImpl class from the JDK

Java Versions

Java Version Reflection

Java 9 (September 2017) Reflection access restrictions enforced by the compiler, not the

runtime

Java 11 (LTS, September 2018) Illegal reflective access creates a warning but is still allowed

Java 16 (March 2021) Illegal reflective access is prevented in the default settings

Similar to many Linux distributions, Java differs between "normal" and LTS (Long Term
Support) releases that have an extended support period.

With Java 17 (released in September 2021), we have

the first Java LTS version that enforces Java Modules

and Module Encapsulation

03 "Remaining" Ysoserial Gadgets
What Still Works "Out of the Box” (incomplete)

URLDNS

• Deserialization causes the JRE to resolve a hostname via DNS

• All used classes are part of the Java Runtime

• No Remote Code Execution, but great to verify deserialization

vulnerabilities

C3P0

• C3P0 is a JDBC pooling library, to handle database connections

• C3P0 provides a custom JNDI reimplementation

• Can be abused to load a Java Class from an attacker-controlled server

CommonsCollections6

• Only uses code from Apache CommonsCollections to get Remote

Code Execution

• Works very reliable

• Patched in CommonsCollections 3.2.2 (more on that later)

Rhino3

• Mozilla Rhino is a JavaScript implementation in Java

• Rhino1 and Rhino2 invoke TemplatesImpl.getOuputProperties()

• Ysoserial Git contains a Rhino3 pull request that works in Java 17

• Last version of Rhino (1.7.14 and 1.7.15) broke deserialization chain

Other Gadgets

• Wicket1 – Write File (fixed in Wicket 6.24.0 (released July 2016)

• AspectJWeaver – Write File

• Clojure

• Jython1

• Groovy1 (fixed in latest version)

• BeanShell1 (fixed in latest version)

Summary

• Most of the publicly known deserialization gadgets will no longer work

out of the box in a Java17 environment

• Some libraries were patched (breaking the deserialization chain)

• Basic vulnerability verification is still possible through URLDNS

04 JNDI Fundamentals
What you need to know

JNDI 101

• Java Naming And Directory Interface

• Allows you to receive a Java Object from a Directory Service (LDAP, RMI)

• You basically query a name and receive an object

• Intended used to provide a central repository for objects (for example

database connections)

• JNDI is still the default way to access LDAP services in Java

Java Object Factories

• By default, JNDI returns a serialized Java Object

• Not all Java Objects can be stored in a naming service:

• Class might not be serializable

• Serialized object might be to big to store it in the service

• In this case, the directory service provides information for a ObjectFactory

• The JNDI client creates a new object factory and uses the provided information to build

the object

Loading Remote Object Factories

• What if the referenced Object Factory is not known by the client?

• It is possible to define a URL where the Java Bytecode can be loaded

• Gives you direct Remote Code Execution

• This behavior has been disabled in January 2017 (Java 11.0.1 and Java 8u191)

• New Default: Restrict to Object Factories already known by the class loader

BeanFactory
In 2019, Michael Stepankin
discovered that Apache Tomcat
contains a ObjectFactory class,
that still provides you reliable
code execution.

Probably one of the most
underrated articles in Java
Security:

https://www.veracode.com/blo
g/research/exploiting-jndi-
injections-java

Rouge JNDI
Michael Stepankin also
released a tool to reliable
exploit JNDI connections in
Tomcat.

Over time, some other
ObjectFactories were added.

https://github.com/artsploit/r
ogue-jndi

Patches
The Apache Tomcat
Developers changed the
default behavior of the
BeanFactory:

10.1.x for 10.1.0-M14 onwards

10.0.x for 10.0.21 onwards

9.0.x for 9.0.63 onwards

8.5.x for 8.5.79 onwards

https://bz.apache.org/bugzilla//s
how_bug.cgi?id=65736

https://bz.apache.org/bugzilla/show_bug.cgi?id=65736
https://bz.apache.org/bugzilla/show_bug.cgi?id=65736

05 Exploitation in 2024
Get RCE or die trying

The possibility to invoke an arbitrary method is still a strong

attack primitive! We just need other sinks!

Xalan-J

• The class

com.sun.org.apache.xalan.internal.xsltc.trax.Template

sImpl is the JDK version from the Xalan-J project

• Xalan-J is not affected by the module restriction

• Only minimal changes in Ysoserial required

Xalan-J

According to Maven,
Xalan-J is used by 1.517
other packages, including
some OWASP packages
☺

"Restoring" CommonsCollections6

Serialization support for unsafe classes in the functor package is disabled by
default as this can be exploited for remote code execution attacks.

To re-enable the feature the system property
"org.apache.commons.collections.enableUnsafeSerialization" needs to be set
to "true".

https://commons.apache.org/proper/commons-collections/release_3_2_2.html

CVE-2020-5902 (RCE in F5 BigIP)

• URL Filter Bypass allowed Communication with HSQLDB Servlet

https://target/tmui/login.jsp/..;/hsqldb/

• HSQLDB allowed to invoke arbitrary static methods

• Can be used to invoke System.setProperty()

CVE-2020-5902

The feature to invoke static
Methods in HSQLDB can be
used to set a system property
and cause the deserialization
of an object.

This was ”fixed” by the
HSQLDB developers in Version
2.7.1.

(CVE-2022-41853)

CALL
"java.lang.System.setProperty"('org.apache.commons.collections.enableUns
afeSerialization','true’) +

"org.apache.commons.lang.SerializationUtils.deserialize"("org.apache.loggin
g.log4j.core.config.plugins.convert.Base64Converter.parseBase64Binary"('rO
0ABXNyABFqYXZhLnV0aWwuSGFzaFNldLpEhZWWuLc0AwAAeHB3DAAAAAI/.
.'))

Setting System Properties

• Restoring original behavior by setting system properties is very common

• You can re-enable Remote JNDI Object Factory Loading through this

• Not aware of a native deserialization gadget that allows this, but can be

archived using JNDI Object Factories

JDBC Database Connections Sink

• Java allows you to set database connection properties in the connection

string.

• JDBC drivers often provide a large attack surface

• Creating an outgoing connection to a database can often provide you

RCE or arbitrary file read

• Can be archived through deserialization

RCE through H2
You can find a detailed
writeup on our blog.

https://mogwailabs.de/en/blo
g/2023/04/look-mama-no-
templatesimpl/

CVE-2024-0692
The H2 approach was also
used to get Remote Code
Execution (RCE) in SolarWinds
Event Manager

https://exp10it.io/2024/03/so
larwinds-security-event-
manager-amf-deserialization-
rce-cve-2024-0692/

06 Summary
Wrapping Things Up

Summary

• Using Java17+ kills the default RCE sink used by many deserialization

gadgets

• Most of the tools that penetration testers are using don’t work in this

environment

• Exploitation is still possible, but more challenging

• Development is similar to what we see in Memory Corruption Exploits

Summary

• Just using Java17 does not prevent actual exploitation

• Remove native deserialization if possible

• Even if you don’t use native deserialization:

Harden your system through Look Ahead Deserialzation (JEP 290)

• https://docs.oracle.com/javase/10/core/serialization-filtering1.htm

Harden Your Java 17 Environment

• Abusing outgoing JNDI calls will become more common

• You can restrict the allowed ObjectFactories

• You can disable Native Deserialization through JNDI

• https://www.lise.de/blog/artikel/log4shell-lessons-learned/

https://www.lise.de/blog/artikel/log4shell-lessons-learned/

Do you have any questions?

MOGWAI LABS GmbH
Am Steg 3
89231 Neu Ulm | Germany

info@mogwailabs.de
https://mogwailabs.de

Thank you!

muench@mogwailabs.de

@h0ng10@infosec.exchange

	Slide 1: Exploiting deserialization vulnerabilities in recent Java versions
	Slide 2: cat /proc/self
	Slide 3
	Slide 4
	Slide 5: 01 Deserialization Fundamentals
	Slide 6
	Slide 7: Deserialization vulnerability
	Slide 8: Java Reflection
	Slide 9: Java Reflection
	Slide 10
	Slide 11: Deserialization Gadget or Gadget Chains
	Slide 12: Deserialization Gadget or Gadget Chains
	Slide 13
	Slide 14: Remote Code Execution Sinks
	Slide 15: TemplatesImpl is The Perfect Sink Object
	Slide 16: 02 Changes in Java 17
	Slide 17: The Java Module System
	Slide 18: Java Modules vs Reflection
	Slide 19
	Slide 20: Java Versions
	Slide 21
	Slide 22: 03 "Remaining" Ysoserial Gadgets
	Slide 23: URLDNS
	Slide 24: C3P0
	Slide 25: CommonsCollections6
	Slide 26: Rhino3
	Slide 27: Other Gadgets
	Slide 28: Summary
	Slide 29: 04 JNDI Fundamentals
	Slide 30: JNDI 101
	Slide 31: Java Object Factories
	Slide 32: Loading Remote Object Factories
	Slide 33
	Slide 34
	Slide 35
	Slide 36: 05 Exploitation in 2024
	Slide 37
	Slide 38: Xalan-J
	Slide 39
	Slide 40: "Restoring" CommonsCollections6
	Slide 41: CVE-2020-5902 (RCE in F5 BigIP)
	Slide 42
	Slide 43: Setting System Properties
	Slide 44: JDBC Database Connections Sink
	Slide 45
	Slide 46
	Slide 47: 06 Summary
	Slide 48: Summary
	Slide 49: Summary
	Slide 50: Harden Your Java 17 Environment
	Slide 51: Thank you!

