
OWASP IoT Top 10
A gentle introduction and an exploration of root causes

Hi!
Nick Johnston (@nickinfosec)

Currently: Coordinator, Sheridan College’s Bachelor of
Cybersecurity

Previously: Digital forensics, incident response, pentester,
developer

Recently: Maker stuff, learning electronics

Overview

● Motivations
● IoT Top 10 Intro
● Case Study Dirty Hack Experiment
● Findings
● Solutions?
● Q&A

Won’t be talking about

Manufacturing supply chain attacks (that Bloomberg article)

Non-consumer IoT:

● ICS/SCADA
● Medical
● Military

Impact of vulnerabilities

CONNECT ALL THE THINGS!

The Cost of Convenience

Motivations
IoT Security Is So Hot Right Now

● BlackHat 2017 - 8 Talks
● BlackHat 2018 - 14 Talks
● BlackHat 2019 - 8 Talks

OWASP IoT Top 10 - 2018

I like electronics and cybersecurity

Primary Motivation - SecTor 2019
Lee Brotherston - “IoT Security: An Insider's Perspective”
https://sector.ca/sessions/iot-security-an-insiders-perspective/

● $things in $places (aka. The Warehouse Problem)
● Identity and Access Management (IAM)
● Low Friction Deployment
● Software Supply Chain
● Hardware protections are not feasible for consumer IoT
● Revenue challenges

https://sector.ca/sessions/iot-security-an-insiders-perspective/

OWASP IoT Top 10
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project

1. Weak, Guessable, or Hardcoded Passwords

1. Weak, Guessable, or Hardcoded Passwords

Use of:

● Easily bruteforced
● Publicly available
● Unchangeable credentials

Including backdoors in firmware or client software that
grants unauthorized access.

2. Insecure Network Services

2. Insecure Network Services

Unneeded or insecure network services running on the
device itself, especially:

● Those exposed to the Internet
● Any that compromise the confidentiality,

integrity/authenticity, or availability of information
● Any service that allows unauthorized remote control

3. Insecure Ecosystem Interfaces

I swear they didn’t pay me to
put this in here...

Insecure interfaces in the
ecosystem outside the
device:

● Web
● Backend API
● Cloud
● Mobile

3. Insecure Ecosystem Interfaces

Common issues:

● Lack of authentication
● Lack of authorization
● Lacking or weak

encryption
● Lack of input and output

filtering

4. Lack of Secure Update Mechanism

Lack of ability to securely update the device.

● Lack of firmware validation on device
● Lack of secure delivery (un-encrypted in transit)
● Lack of anti-rollback mechanisms
● Lack of notifications of security changes due to updates

4. Lack of Secure Update Mechanism

2016 Carnegie Mellon University Study
On Board Diagnostics: Risks and Vulnerabilities of the
Connected Vehicle
- Observations: insecure firmware updates and

downloads
- Researchers were able to make arbitrary firmware

modifications and maliciously update remote
firmware.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=453871

https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=453871

5. Use of Insecure or Outdated Components

Use of deprecated or insecure software components/libraries
that could allow the device to be compromised.

● Insecure customization of operating system platforms
● Third-party software libraries from a compromised supply

chain
● Third-party hardware components from a compromised

supply chain

5. Use of Insecure or Outdated Components

HeartbleedMeltdown Spectre

6. Insufficient Privacy Protection

User’s personal information stored on the device or in the
ecosystem that is used insecurely, improperly, or without
permission.

6. Insufficient Privacy Protection

2017 Cornell University Study
A Smart Home is No Castle: Privacy Vulnerabilities of
Encrypted IoT Traffic
“we examine four IoT smart home devices [...] and find
that their network traffic rates can reveal potentially
sensitive user interactions even when the traffic is
encrypted”
https://arxiv.org/abs/1705.06805

https://arxiv.org/abs/1705.06805

7. Insecure Data Transfer and Storage

Lack of encryption or access control of sensitive data
anywhere within the ecosystem, including at rest, in transit, or
during processing.

��

7. Insecure Data Transfer and Storage

“The Espressif ESP8266 chipset makes three-dollar
‘Internet of Things’ development boards an economic
reality. According to the popular automatic
firmware-building site nodeMCU-builds, in the last 60 days
there have been 13,341 custom firmware builds for that
platform. Of those, only 19% have SSL support, and 10%
include the cryptography module.”

https://hackaday.com/2017/06/20/practical-iot-cryptography-on-the-espressif-e
sp8266/

https://hackaday.com/2017/06/20/practical-iot-cryptography-on-the-espressif-esp8266/
https://hackaday.com/2017/06/20/practical-iot-cryptography-on-the-espressif-esp8266/

8. Lack of Device Management

Lack of security support on devices deployed in production,
including asset management, update management, secure
decommissioning, systems monitoring, and response
capabilities.

8. Lack of Device Management
We haven’t solved this for non-IoT environments yet..
● 25% still rely on Excel spreadsheets to track assets
● 56% verify asset location only once a year, while 10-15%

verify only every five years
● Staff spends 10+ hours weekly to resolve data accuracy

issues
● Nearly 66% of IT managers have an incomplete record of

their IT assets

https://www.scmagazine.com/home/opinion/executive-insight/tighter-control-over-it
-asset-management-the-key-to-securing-your-enterprise/

https://www.scmagazine.com/home/opinion/executive-insight/tighter-control-over-it-asset-management-the-key-to-securing-your-enterprise/
https://www.scmagazine.com/home/opinion/executive-insight/tighter-control-over-it-asset-management-the-key-to-securing-your-enterprise/

9. Insecure Default Settings

Devices or systems shipped with insecure default settings or
lack the ability to make the system more secure by restricting
operators from modifying configurations.

9. Insecure Default Settings

Bad filesystem permissions

Exposed services running as root

10. Lack of Physical Hardening

Lack of physical hardening measures, allowing potential
attackers to gain sensitive information that can help in a
future remote attack or take local control of the device.

10. Lack of Physical Hardening

Easily Available Debug Port Discovery

The Experiment

Wanted to identify potential root causes

Wanted to simulate:

● Pressures of getting to market quickly
● Unfamiliarity with IoT product development process
● Unfamiliarity with secure development practices

A 24 hour IoT Hackathon

The Background (because we all love a narrative)

At the pub after
work

Get website IoT
product drunk

Smart Mirrors!

What is a Smart Mirror?

A monitor and a Raspberry Pi
taped to the back of a
one-way mirror.

The Pi updates the display
with some predetermined info
like date/time, weather, train
schedule, etc.

Other people are making smart mirrors!

I NEED to be FIRST for that sweet VC $$$.

My friend works for PrimeHuFlix+ and they got
me a spot TOMORROW on Dragons’ Den Shark
Tank ...

Goose Roost

I get excited and start thinking about marketing...

I pick a hip name: brainmirror

I “register a domain”

echo “localhost brainmirror.com” >> /etc/hosts

I work memes into your logo

Oh wait...I have to make it first

Design Requirements

● Cheap
● No subscription
● Low friction deployment
● Ease of use
● (also it works..hopefully)

The Hardware
Raspberry Pi Zero
(Anything with WiFi that will run embedded Linux)

The Prototype

IoT Edition

General Solution Structure

1. Pi starts as a wireless access point
2. Connect to AP and enter local WiFi credentials
3. Device redirects to local setup/registration page
4. Registration page sent to server
5. Device reboots and starts fullscreen mirror application
6. Device queries remote server for data and updates

Technology Stack

Raspbian Setup (Development Setup)
Download Raspbian (https://www.raspberrypi.org/downloads/raspbian/)

Copy the Raspbian image onto an SD card (replace sdX with yours)

dd bs=4M if=your_raspbian_image.img of=/dev/sdX conv=fsync

Boot the Pi and run through the standard Raspbian installer

When the Pi reboots after installation, open a terminal

sudo apt install python3 pip3 flask dnsmasq hostapd

Shutdown the Pi and image the SD card

dd bs=4M if=/dev/sdX of=dev_image.img

Raspbian Setup (Development Setup)
Now you can mount the image and edit any files, install the base software, etc.

Mounting the development image:

sudo fdisk -l dev_image.img

532480 * 512 = 272629760

sudo mkdir /mnt/pi

sudo mount -v -o offset=272629760 -t ext4 ./dev_image.img /mnt/pi

Copy application to /mnt/pi/app/brainmirror and edit configs (see later slides).
Now you can DD your image onto 100s of SD cards for manufacturing and deployment!

Raspbian Setup (No login boot)
(The default is to boot to the desktop without a password prompt

but maybe you want to boot to console and start X later? If so..)

$ vim /etc/inittab

#1:2345:respawn:/sbin/getty --noclear 38400 tty1

1:2345:respawn:/bin/login -f pi tty1 /dev/tty1 2>&1

:wq

$ sudo shutdown -r now

Raspbian Setup (Startup)
$ sudo vi /etc/rc.local

export FLASK_APP=wifi

flask run

if wificreds.txt exists

sudo systemctl disable hostapd

sudo systemctl stop hostapd

chromium --app=file:///app/brainmirror/mirror.html \

--start-fullscreen --kiosk

else

We’re running a wireless AP (see next few slides)

chromium --app=file:///app/brainmirror/setup.html \

--start-fullscreen --kiosk

Setup.html (this will be displayed on the mirror)

Wireless.html (this will be displayed on user’s phone)

Response

Client Setup - Registration Page

Raspbian Setup (Standalone AP)
$ sudo systemctl stop dnsmasq

$ sudo systemctl stop hostapd

$ sudo vi /etc/dhcpcd.conf

interface wlan0

 static ip_address=192.168.4.1/24

 nohook wpa_supplicant

:wq

$ sudo mv /etc/dnsmasq.conf /etc/dnsmasq.conf.orig

$ sudo vi /etc/dnsmasq.conf

interface=wlan0

dhcp-range=192.168.4.2,192.168.4.20,255.255.255.0,24h

:wq

Raspbian Setup (Standalone AP - cont)
$ sudo vi /etc/hostapd/hostapd.conf

interface=wlan0

driver=nl80211

ssid=BrainMirrorSetup

channel=1

:wq

$ sudo vi /etc/default/hostapd

DAEMON_CONF="/etc/hostapd/hostapd.conf"

:wq

$ sudo systemctl unmask hostapd

$ sudo systemctl enable hostapd

Server Build (basically)
$ ssh nick@brainmirror.com

$ sudo apt install python3 pip3 redis git

$ git clone brainmirror; cd brainmirror

$ pip3 install -r requirements.txt

$ sudo cp brainmirror.service /etc/systemd/system/

$ sudo systemctl daemon-reload

$ sudo systemctl start brainmirror

Server-Side Code

Server-Side Code - Device Registration

Mirror Code
mirror.html (the important bit)

Server-Side Code - Getting Mirror Data

Server-Side Code - Software Updates

I think I’ve made my point.
We’ll just end this before it
gets worse.

What went wrong?
1. Weak, Guessable, or Hardcoded Passwords

Also we never changed the default Raspberry Pi user in Raspbian.

Why?

No idea how to do fancy “first time untrusted connection” protocols. It was easy to
just make a shared key and it helps with “The Warehouse Problem”.

Firmware developer unfamiliar with ease of extraction with physical access.

What went wrong?
2. Insecure Network Services

Never disabled SSH

Never disabled the local web server on the mirror that was used for setup.

Why?

Leftovers from development and testing

Support over ssh maybe

Low friction deployment and ease of use was a requirement

What went wrong?
3. Insecure Ecosystem Interfaces

● No real authentication or authorization
● Served over plaintext http
● No input/output sanitizing
● Lots of opportunity for stored XSS in the config and mirror data
● Probably CSRFable?

Why? Pace of development, had to make it to market and we went with a
technology stack we knew.

Didn’t bother with things like a proper framework, built-in controls or even Let’s
Encrypt for encryption.

Hoping for security through obscurity?

What went wrong?
4. Lack of Secure Update Mechanism

Let’s look at that update function again.

Why? Easy to implement. Solves “The Warehouse Problem” really well.

What went wrong?
(Double Jeopardy)

6. Insufficient Privacy Protection & 7. Insecure Data Transfer and Storage

● No HTTPS
● No disk encryption
● Location data and name being stored server-side potentially an issue

Why? Maybe unfamiliar with Let’s Encrypt. Possibly holding on to old notions of
crypto performance (even cheap chips have hardware crypto support to some
extent now).

Didn’t realize the scope or implications from newer/stricter privacy legislation.

Wouldn’t it have been easy to
fix these issues?

“Nothing is more permanent
than a temporary solution.”

Root Cause Examination

Potential common root causes for all the issues I experienced

● Rapid pace of development to keep up with the market
● Product requirements
● Low friction deployment & warehouse problem
● Outdated training for hardware and software teams

What can we do?

● Turn-key ecosystems
● Secure base-OS with support for quick and easy updates

(docker?)
● Libraries and frameworks to solve problems like updates,

first-connection trouble, IAM
● Education and training (IoT Top 10 a good start)

Thanks!
Questions?

