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Disclaimers

• My personal views and opinions may not 
represent the position(s) of my employers.

• Mention of any OSS or commercial product 
names in this talk are not an endorsement.

• Information provided is not public sensitive and 
based on my 3 years of container security ops.



About Me

• Specialized in AppSec, DevOpsSec, 
CloudSec, & Vulnerability Assessment

• Prior Help Desk Support, WebDev, 
SysAdm, Project Manager, Forensic 
Examiner, & Security Auditor 

• Worked in academia, healthcare, risk 
mgt, contracting, & government



Typical Application Challenges

• Large organization

• Brownfield 

• Large number of applications
– Some New

– Some Old

– Some Decrepit

– Internet, Extranet and Intranet facing

– All different

– Got micro services too!



Security Challenges in DevOps Orgs

Security: we are [usually] the last to know… and first to respond.



Benefits for DevOps and Security



Container Security Benefits – Cake Icing

• Standard, hardened infrastructure on releases

• Pipeline integration moves security left

• Read-only containers = Application Whitelisting

• Continuous (re)deploying from known good

• No humans in production – SSH turned off

• Patching improvements

• Complete record of changes



Container DevOps Benefits – The Cake Layers

• Containers will run the same 
– Packaged OS + Dependencies + App run
– Reduces “worked on *my* machine”
– Portable to deploy across hosts

• Produces:
– Higher Developer Productivity
– Patches baked before tests in releases
– More frequent Release schedule
– Increased Server utilization on hosts



My [Enterprise] Container Journey

- Understanding the basic tech

- My first [trusted] container

- Moving security upstream

- Avoid the container failboat



Understanding the basic tech

• Uses OS level virtualization

• Shares host OS resources + 
kernel at runtime

• Isolation applies for processes, 
filesystem, & network via OS kernel

• Images sealed w/ crypto hash

• Typically Copy-on-write (CoW) *layered* file system

“A construct designed to package and run an application or its` components running on 
a shared Operating System.”  
- NIST Pub 800-180 (draft), “NIST Definition of Microservices, Application Containers and System Virtual Machines”



My first 
[trusted] 
container

Base source OS

Env app vars injection

OS patching + build

Metadata 
tagging



Moving Container Security Upstream
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Avoiding the container failboat...



Container orchestration 
failboat



Learning Secure App Containers 

Container OrchestrationLocal Container Development



1. Center for Internet Security Benchmarks

• Community consensus driven + CIS PM managed

• Defines Level 1 (general) & Level 2 (sensitive info) 
processing controls

• Host OS + Container Daemon + Container Image + 
Container Runtime

• Available for Cloud, OSes, Docker, & Kubernetes



2. Develop threat model for app risk postures

• Processes executing on container and hosts

• Data being processed (intermix on hosts? 
Sensitive? Access controls?)

• Sources of connections (internal, external, 
behind proxy? Inputs? Outputs?)



3. Determine expected container app ops

• App logs to SIEM (audit, error, info level)

• Data persistence (host? net share? Data SaaS?)

• Health checks (simple vs. complex)

• Restart vs. destroy on non-responsive containers 



4. Runtime: Choose your own adventure

• Run the stack myself? 

• Have a vendor run the stack 
for me?

• Hybrid model?



My Container Security Maturity Model

• Purposely build security from day 1

• Focus on basic critical items 1st to 
reduce major vulns

• Mature your #ContainerOps into 
rest of industry benchmarks

• Optimize and tweak to your 
organization policies and needs



Container Host Security Management
Maturity Objectives

1: Initial • Use a standard out-of-the-box server operating system
• Use standalone container daemons on local hosts

2: Managed • Use of networked container daemons
• Use default kernel calls and namespaces
• Enforce host and container logging

3: Defined • Command + control of host daemons
• Scaling homogenesis hosts based on orchestration app loads
• Establishing logical groups of hosts to process sensitive app info

4: Quantified • Restricting kernel calls by containers to host
• Minimalistic hosts to operate only container daemons

5: Optimizing • Reducing surface attack areas on hosts (i.e. no SSH access)
• Removing container binding to certain host dependencies
• Chaos Monkey resiliency when taking hosts out



Container Image Security Management
Maturity Objectives

1: Initial • Scan for CVEs in OS, Package Managers, and App Dependencies
• Establish series of trusted base images for DevOps use
• No root users in container OS image

2: Managed • Establish internal registries for non-prod and prod use
• Build series of base and framework images
• Metadata tag releases beyond version number

3: Defined • Chain app image rebuilds back to base + framework images 
• Image & compliance scans to break builds and stop runtimes

4: Quantified • Automated redeployments on new CVE drops from dev to prod
• Monitor processes + hashes, network, and kernel interactions
• Matching found runtime threats to indicators of compromise (IoCs)

5: Optimizing • Customized whitelist of kernel namespace and syscalls per app
• Exporting runtime threat results to OASIS STIX for kill chain analysis



Container Data & Ops Management
Maturity Objectives

1: Initial • Basic CI/CD pipeline processes to build and push releases
• Avoid data writes to container file system (except tempfs)
• Set CPU and memory runtime min and max limits

2: Managed • Basic autoscaling containers framework on same hosts
• Data writes to managed container volumes on daemon host
• Restrict access to “hand jamming” deployments in orchestration

3: Defined • Enabling read-only containers to reduce attack surface
• Data volumes are dynamically managed under orchestration

4: Quantified • Use mature data management patterns for data persistence
• Application secrets are injected at runtime as environment vars

5: Optimizing • Custom runtime defenses based on application risk posture
• Application secrets are accessed “just-in-time” for runtime
• Tracking container runtime drift of processes, network, and kernel



Further Reading

• NIST Special Publication 800-190: Application Container 
Security Guide (Final)
https://csrc.nist.gov/publications/detail/sp/800-190/final

• CIS Security Benchmarks
https://www.cisecurity.org/cis-benchmarks/

• NCC Group’s “Understanding and Hardening Linux 
Containers v1.1”
https://www.nccgroup.trust/globalassets/our-
research/us/whitepapers/2016/april/ncc_group_underst
anding_hardening_linux_containers-1-1.pdf

https://csrc.nist.gov/publications/detail/sp/800-190/final
https://www.cisecurity.org/cis-benchmarks/
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf

