J.'..‘ 1‘ . T ‘

Vi o SRS e

B ¥ Breape SR e
v ‘l .'-:‘__ ., _}‘ " '.. 2 y % - 'k,_. - ...'; .

¥, ~N ‘ \ S I | ~
Open Web prllcatlon . ~ ¢ y. Je R

: ! \ L g¥ ek
Security Project S o S U e & S G T Y
0 : I",'-{.;/ '.TJ"/’\I’-' T s.\ %
g ~._--."’ aA,‘V’—:’ »e
AR _.ﬂ 4 ' .
B S J'

How to stop worrying about
Application Container Security (2

Brian Andrzejewski
Information System Security Architect

Twitter: @DevSecOpsGeer
LinkedIn: https://www.linkedin.com/in/bandrzej

Disclaimers

My personal views and opinions may not
represent the position(s) of my employers.

 Mention of any OSS or commercial product
names in this talk are not an endorsement.

* Information provided is not public sensitive and
based on my 3 years of container security ops.

F) OLUASP

Open Web Application
Security Project

About Me

e Specialized in AppSec, DevOpsSec,
CloudSec, & Vulnerability Assessment

* Prior Help Desk Support, WebDey,
SysAdm, Project Manager, Forensic
Examiner, & Security Auditor

e Worked in academia, healthcare, risk
mgt, contracting, & government

UUJr-I.)D

Typical Application Challenges

Large organization
Brownfield
Large number of applications

— Some New
— Some Old
— Some Decrepit
— Internet, Extranet and Intranet facin E(IU]EU]IEYE@[UUE)?
g MMpHarﬂwr.nat

— All different
— Got micro services too!

OLUASP

n Web prhcatlon

S eeeee ity Project

1braa I(/llfl table correlation betwe l)/f/;/)

Shln Nw |
Things

@ ThePractical Dev

ORLY?

ity fixes are in our | 1 backle

[ncident Response
Application DevOps
Pushing AppSec right

@roberthuribut

O RLY’ @ DevSecOpsGeer

Securlty Challenges in DevOps Orgs

Em

Grear cyber, the best cyber, yuusuuge cyber

The Cyber

@ ThePractical Dev

O RLY?

Security: we are [usually] the last to know... and first to respond.

. Open Web Flppllcatlon

Security Project

Benefits for DevOps and Security

| WASTOLD 'I'IIEIIWIIIIIII.BE CAKE

imgflip_com

) OLUASP

Security Project

Container Security Benefits — Cake Icing

e Standard, hardened infrastructure on releases
* Pipeline integration moves security left

* Read-only containers = Application Whitelisting
* Continuous (re)deploying from known good

* No humans in production — SSH turned off

* Patching improvements

* Complete record of changes

DUJFL)D

UJ b Applicati
S eeeeee y Project

Container DevOps Benefits — The Cake Layers

* Containers will run the same
— Packaged OS + Dependencies + App run
— Reduces “worked on *my* machine”
— Portable to deploy across hosts

* Produces:
— Higher Developer Productivity
— Patches baked before tests in releases
— More frequent Release schedule
— Increased Server utilization on hosts

) OLUASP

n Web Application

S eeeee ity Project

My [Enterprise] Container Journey

Understanding the basic tech

My first [trusted] container

Moving security upstream

Avoid the container failboat

) OLASP

Security Project

Understanding the basic tech

e Uses OS level virtualization

e Shares host OS resources +
kernel at runtime

e |solation applies for processes, “
filesystem, & network via OS kernel
* |mages sealed w/ crypto hash

* Typically Copy-on-write (CoW) *layered™ file system

“A construct designed to package and run an application or its' components running on

a shared Operating System.”
- NIST Pub 800-180 (draft), “NIST Definition of Microservices, Application Containers and System Virtual Machines”

- [JUJH P

n Web Rppllcatlon
Sec rity Project

FROM centos7.1.1583 Base source OS

MAINTAINER USCIS <noreply@uscis.dhs.gov>
. . L .
IVI fl rSt ENV http_proxy-{INTERNET PROXY}/ \ Env app vars injection
https proxy={INTERNET PROXY}/ \
no_proxy={NO_PROXY} \
[t t d] NEXUS={NEXUS_SERVER}
'l: °

RUN echo "http_caching=packages™ »>> fetc/yum.conf \ . o
&& yum upgrade -y \ OS patChlng + bulld

&& yum install epel-release wget -y \
&& yum clean all -y

ARG BUILDER_HOST
ARG DOCKER_IMAGE
ARG GIT_REPO

ARG GIT_BRANCH
ARG GIT_HASH

ARG DOCKER_TAG
ARG BUILD_DATE
ARG BASE_SHA

ARG CREATED
ARG VENDOR
ARG VERSION

LABEL com.docker.hub.base.version="${VERSION:-UNKNOWN}" *\ Metadata
com.docker.hub.base.image="${VENDOR : -UNKNOWN}" *\
com.docker.hub.base.build-date="$%{CREATED: -UNKNOWN}" tagging
com.docker.hub.base.digest="%{BASE_SHA:-UNKNOWN}" \

34 gov.dhs.uscis.base.image="%{DOCKER_IMAGE:-centos7-basel}" \

gov.dhs.uscis.base.builder="%{BUILDER_HOST:-UNKNOWN}"
gov.dhs.uscis.base.git.repo="${GIT_REPO:-USCIS/dockerfiles}"™ \
gov.dhs.uscis.base.git.branch="%{GIT BRANCH:-UNKNOWN}"
gov.dhs.uscis.base.git.sha="%{GIT_HASH:-UNKNOWN}" *\
gov.dhs.uscis.base.version="%{DOCKER TAG:-8.8.x}" \
gov.dhs.uscis.base.build-date="${BUILD_DATE: -UNKNOWN}"

Moving Container Security Upstream

Deploy = Promote
to Prod
Repo

Test Create | Security
Code Image Scans
\ . \

EJUJHSU

-

AvVolding the contalner talll

anL"

Running as root (for all things

OA.- o N

Unbounded CPU f_ng_emgy ru”‘tlm_,e

c,v‘

3 'z

&, 9) D A |
Unsecured wrma’l net

work ‘a‘téﬂy

Mixing workloads of different threat postures

Break the tech to learn the tech
(...in a controlled non-prod environment — of course!)

) OLUASP

Open Web Application
Securi ity Project

Container orchestration { ‘L

fallboat\—>

f“‘\

Release

Manacer ...or suffer in production — massively.

@ ownase

Security Project

INErsS

Secure App Conta

ing

Learn

s m‘ Tcﬂ" 7._l~>

LEENRELDER
TR aan

EEEL e

e BRERER

S~ = P
olEl T
HEEgneEK
BREEYBFEFL
R AR

CRC RS
kmnnmmrr
* BT I

Container Orchestration

Local Container Development

Web Application
Security Project

Open

al
.
T
=
=

1. Center for Internet Security Benchmarks

e Community consensus driven + CIS PM managed

* Defines Level 1 (general) & Level 2 (sensitive info)
processing controls

* Host OS + Container Daemon + Container Image +
Container Runtime

e Available for Cloud, OSes, Docker, & Kubernetes

DUJFL)D

UJ b Applicati
S eeeeee y Project

2. Develop threat model for app risk postures

* Processes executing on container and hosts

e Data being processed (intermix on hosts?
Sensitive? Access controls?)

* Sources of connections (internal, external,
behind proxy? Inputs? Outputs?)

OWASP

Open Web Application
Security Project

3. Determine expected container app ops
* App logs to SIEM (audit, error, info level)

e Data persistence (host? net share? Data SaaS?)
* Health checks (simple vs. complex)

* Restart vs. destroy on non-responsive containers

| UUJF-I.)D

UJ b Applicati
S eeeeee y Project

4. Runtime: Choose your own adventure

LA CHOOSE YOUR OWN ADVENTURE® &

H YOURE THE STAR OF THE -8
£ STORY! CHOOSE FROM 22 POSSIBLE ENDINGS.

SUPERCOMPUTER

BY EDWARD PACKARD

Run the stack myself?

Have a vendor run the stack
for me?

Hybrid model?

SIEEE

Open Web Application
Security Project

My Container Security Maturity Model

I love creating matiyoska dolls.

* Purposely build security from day 1

* Focus on basic critical items 1st to
reduce major vulns

* Mature your #ContainerOps into
rest of industry benchmarks JVM inside of Docker

inside of Xen server

* Optimize and tweak to your
organization policies and needs o RLY’ wbessecomsGeor

&) oLAsP

Security Project

Container Host Security Management

Maturity Objectives

1: Initial Use a standard out-of-the-box server operating system
e Use standalone container daemons on local hosts

2: Vianaged * Use of networked container daemons
e Use default kernel calls and namespaces
* Enforce host and container logging

3: Defined e Command + control of host daemons
* Scaling homogenesis hosts based on orchestration app loads
e Establishing logical groups of hosts to process sensitive app info

CENOITETdi[<M » Restricting kernel calls by containers to host
 Minimalistic hosts to operate only container daemons

4

11 * Reducing surface attack areas on hosts (i.e. no SSH access)
* Removing container binding to certain host dependencies

* Chaos Monkey resiliency when taking hosts out
OWASP

Open Web Application
Security Project

|\

5: Optimi:

Container Image Security Management

Maturity Objectives

1: Initial Scan for CVEs in OS, Package Managers, and App Dependencies
» Establish series of trusted base images for DevOps use
* No root users in container OS image

2: IVlanaged e Establish internal registries for non-prod and prod use
* Build series of base and framework images
 Metadata tag releases beyond version number

3: Defined e Chain app image rebuilds back to base + framework images
* Image & compliance scans to break builds and stop runtimes

CENOIIEN i< « Automated redeployments on new CVE drops from dev to prod
* Monitor processes + hashes, network, and kernel interactions
* Matching found runtime threats to indicators of compromise (loCs)

4

112 » Customized whitelist of kernel namespace and syscalls per app

|\

I

5: Optimiz
* Exporting runtime threat results to OASIS STIX for kill chain analysis

OLASP

Open Web Application
Security Project

Container Data & Ops Management

Maturity Objectives

1: Initial Basic CI/CD pipeline processes to build and push releases
* Avoid data writes to container file system (except tempfs)
* Set CPU and memory runtime min and max limits

2: IVlanaged * Basic autoscaling containers framework on same hosts
* Data writes to managed container volumes on daemon host
* Restrict access to “hand jamming” deployments in orchestration

3: Defined e Enabling read-only containers to reduce attack surface
e Data volumes are dynamically managed under orchestration

CENOITEHi[-M « Use mature data management patterns for data persistence
* Application secrets are injected at runtime as environment vars

Iri * Custom runtime defenses based on application risk posture

N

1

5: Optimiz
* Application secrets are accessed “just-in-time” for runtime
* Tracking container runtime drift of processes, network, and kernel

OLWASP

Open Web Application
Security Project

Further Reading

* NIST Special Publication 800-190: Application Container
Security Guide (Final)
https://csrc.nist.gov/publications/detail/sp/800-190/final

* CIS Security Benchmarks
https://www.cisecurity.org/cis-benchmarks/

* NCC Group’s “Understanding and Hardening Linux
Containers v1.1”
https://www.nccgroup.trust/globalassets/our-
research/us/whitepapers/2016/april/ncc group underst
anding hardening linux containers-1-1.pdf

DUJFL)D

UJ b Application
S eeeeee y Project

https://csrc.nist.gov/publications/detail/sp/800-190/final
https://www.cisecurity.org/cis-benchmarks/
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf

