
How to stop worrying about
Application Container Security (v2)

Brian Andrzejewski
Information System Security Architect

Twitter: @DevSecOpsGeer
LinkedIn: https://www.linkedin.com/in/bandrzej

Disclaimers

• My personal views and opinions may not
represent the position(s) of my employers.

• Mention of any OSS or commercial product
names in this talk are not an endorsement.

• Information provided is not public sensitive and
based on my 3 years of container security ops.

About Me

• Specialized in AppSec, DevOpsSec,
CloudSec, & Vulnerability Assessment

• Prior Help Desk Support, WebDev,
SysAdm, Project Manager, Forensic
Examiner, & Security Auditor

• Worked in academia, healthcare, risk
mgt, contracting, & government

Typical Application Challenges

• Large organization

• Brownfield

• Large number of applications
– Some New

– Some Old

– Some Decrepit

– Internet, Extranet and Intranet facing

– All different

– Got micro services too!

Security Challenges in DevOps Orgs

Security: we are [usually] the last to know… and first to respond.

Benefits for DevOps and Security

Container Security Benefits – Cake Icing

• Standard, hardened infrastructure on releases

• Pipeline integration moves security left

• Read-only containers = Application Whitelisting

• Continuous (re)deploying from known good

• No humans in production – SSH turned off

• Patching improvements

• Complete record of changes

Container DevOps Benefits – The Cake Layers

• Containers will run the same
– Packaged OS + Dependencies + App run
– Reduces “worked on *my* machine”
– Portable to deploy across hosts

• Produces:
– Higher Developer Productivity
– Patches baked before tests in releases
– More frequent Release schedule
– Increased Server utilization on hosts

My [Enterprise] Container Journey

- Understanding the basic tech

- My first [trusted] container

- Moving security upstream

- Avoid the container failboat

Understanding the basic tech

• Uses OS level virtualization

• Shares host OS resources +
kernel at runtime

• Isolation applies for processes,
filesystem, & network via OS kernel

• Images sealed w/ crypto hash

• Typically Copy-on-write (CoW) *layered* file system

“A construct designed to package and run an application or its` components running on
a shared Operating System.”
- NIST Pub 800-180 (draft), “NIST Definition of Microservices, Application Containers and System Virtual Machines”

My first
[trusted]
container

Base source OS

Env app vars injection

OS patching + build

Metadata
tagging

Moving Container Security Upstream

App Test Build Process

Git/SVN

Dev

Image

Repo

Build
Code

Test
Code

Create
Image

Security
Scans

Fail

PassPromoteDeploy
to Prod

App Production Release Process

Prod

Image

Repo

Pull base image

Avoiding the container failboat...

Container orchestration
failboat

Learning Secure App Containers

Container OrchestrationLocal Container Development

1. Center for Internet Security Benchmarks

• Community consensus driven + CIS PM managed

• Defines Level 1 (general) & Level 2 (sensitive info)
processing controls

• Host OS + Container Daemon + Container Image +
Container Runtime

• Available for Cloud, OSes, Docker, & Kubernetes

2. Develop threat model for app risk postures

• Processes executing on container and hosts

• Data being processed (intermix on hosts?
Sensitive? Access controls?)

• Sources of connections (internal, external,
behind proxy? Inputs? Outputs?)

3. Determine expected container app ops

• App logs to SIEM (audit, error, info level)

• Data persistence (host? net share? Data SaaS?)

• Health checks (simple vs. complex)

• Restart vs. destroy on non-responsive containers

4. Runtime: Choose your own adventure

• Run the stack myself?

• Have a vendor run the stack
for me?

• Hybrid model?

My Container Security Maturity Model

• Purposely build security from day 1

• Focus on basic critical items 1st to
reduce major vulns

• Mature your #ContainerOps into
rest of industry benchmarks

• Optimize and tweak to your
organization policies and needs

Container Host Security Management
Maturity Objectives

1: Initial • Use a standard out-of-the-box server operating system
• Use standalone container daemons on local hosts

2: Managed • Use of networked container daemons
• Use default kernel calls and namespaces
• Enforce host and container logging

3: Defined • Command + control of host daemons
• Scaling homogenesis hosts based on orchestration app loads
• Establishing logical groups of hosts to process sensitive app info

4: Quantified • Restricting kernel calls by containers to host
• Minimalistic hosts to operate only container daemons

5: Optimizing • Reducing surface attack areas on hosts (i.e. no SSH access)
• Removing container binding to certain host dependencies
• Chaos Monkey resiliency when taking hosts out

Container Image Security Management
Maturity Objectives

1: Initial • Scan for CVEs in OS, Package Managers, and App Dependencies
• Establish series of trusted base images for DevOps use
• No root users in container OS image

2: Managed • Establish internal registries for non-prod and prod use
• Build series of base and framework images
• Metadata tag releases beyond version number

3: Defined • Chain app image rebuilds back to base + framework images
• Image & compliance scans to break builds and stop runtimes

4: Quantified • Automated redeployments on new CVE drops from dev to prod
• Monitor processes + hashes, network, and kernel interactions
• Matching found runtime threats to indicators of compromise (IoCs)

5: Optimizing • Customized whitelist of kernel namespace and syscalls per app
• Exporting runtime threat results to OASIS STIX for kill chain analysis

Container Data & Ops Management
Maturity Objectives

1: Initial • Basic CI/CD pipeline processes to build and push releases
• Avoid data writes to container file system (except tempfs)
• Set CPU and memory runtime min and max limits

2: Managed • Basic autoscaling containers framework on same hosts
• Data writes to managed container volumes on daemon host
• Restrict access to “hand jamming” deployments in orchestration

3: Defined • Enabling read-only containers to reduce attack surface
• Data volumes are dynamically managed under orchestration

4: Quantified • Use mature data management patterns for data persistence
• Application secrets are injected at runtime as environment vars

5: Optimizing • Custom runtime defenses based on application risk posture
• Application secrets are accessed “just-in-time” for runtime
• Tracking container runtime drift of processes, network, and kernel

Further Reading

• NIST Special Publication 800-190: Application Container
Security Guide (Final)
https://csrc.nist.gov/publications/detail/sp/800-190/final

• CIS Security Benchmarks
https://www.cisecurity.org/cis-benchmarks/

• NCC Group’s “Understanding and Hardening Linux
Containers v1.1”
https://www.nccgroup.trust/globalassets/our-
research/us/whitepapers/2016/april/ncc_group_underst
anding_hardening_linux_containers-1-1.pdf

https://csrc.nist.gov/publications/detail/sp/800-190/final
https://www.cisecurity.org/cis-benchmarks/
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf

