
THE
NODE.JS

HIGHWAY:

ATTACKS
AT FULL

THROTTLE

Susan St.Clair,
Solutions Architect

Checkmarx

Agenda

• Architecture

• DoS

• Weak Crypto

• JSON “SQLi”

• Re-DoS

• App Re-Routing

Agenda

Single Thread Architecture - Event Loop

Event Queue

Network

Database

File System

Register Callback

Operation Complete
Trigger Callback

Event Loop
Single Thread

Single Threaded
Event Loop

Event handler

Code.DanYork.Com

http://code.danyork.com/

• CPU intensive applications

• Complex business logic that

requires lots of calculations

• I/O intensive applications

• DB queries

• UI intensive applications

(many webapps)

What’s it Good for?

Function sum (p)

for (i=1;i<=p;++i)

{

f=f+i;

}

Denial of Service (DoS)

DoS DEMO

Weak Crypto

Seed State0[0,1]

State1[0,1]

State2[0,1]

State3[0,1]

Staten[0,1]

Random0

Random1

Random2

Randomn

Random3Check out Amit Klein’s research on the

subject

http://dl.packetstormsecurity.net/paper

s/general/Google_Chrome_3.0_Beta_M

ath.random_vulnerability.pdf

V8 PRNG is known to be weak

http://dl.packetstormsecurity.net/papers/general/Google_Chrome_3.0_Beta_Math.random_vulnerability.pdf

Given 3 “random” new passwords – we will be able to tell all future ones

• First, we need to “reverse” the MD5 for 3 passwords to their
original “random” float number

• Then, we need to compute the “state” variable to get the 4th consecutive
value.

V8’s Default PRNG

• Given 3 consecutive random numbers, the values of state[0] and state[1] can be

inferred – hence all future values can be known in advance.

But

• In browsers, each tab has its own set of “state” variables. That’s one of the

reasons this issue is treated as low-severity

But

• In node.js, all users are running within the same context. Each user can tell what

are the values of the global “state” variables.

V8’s Default PRNG – So What?!

Step 1

Register FakeUser1

Register FakeUser2

Register FakeUser3

FakeUser1 Password

FakeUser2 Password

FakeUser3 Password

Reminder:
Password = MD5(random())

Step2

Register FakeUser1

Register FakeUser2

Register FakeUser3

FakeUser1 Password

FakeUser2 Password

FakeUser3 Password

Reminder:
Password = MD5(random())

Step3

FakeUser1 – Clear Random

FakeUser1 Password

FakeUser2 Password

FakeUser3 Password

Reminder:
Password = MD5(random())

FakeUser2 – Clear Random

FakeUser3 – Clear Random

Step 4

FakeUser1 – Clear Random

FakeUser1 Password

FakeUser2 Password

FakeUser3 Password

Reminder:
Password = MD5(random())

FakeUser2 – Clear Random

FakeUser3 – Clear Random

RealUser1 – Future Password

PASSWORD GUESSING
DEMO

Architecture

•MongoDB
•Document-oriented
database.

•Classified as NoSQL

•Doesn’t use the traditional
table-based structure

•Stores JSON documents in
its dynamic schemas.

Mongo Queries

db.products.insert({ item: "card", qty : 15 })

db.products.insert({ name: “elephant", size: 1700 })

db.products.insert

db.products.find

db.products.find() - Find all of them

db.products.find({ qty: 15 }) - Find based on equality

db.products.find({ qty: { $gt: 25 } }) - Find based on criteria

Data is inserted and stored as JSON

Queries as described using JSON

var obj;

obj.qty=15;

db.products.find(obj)

name = req.query.username;

pass = req.query.password;

db.users.find({username: name, password: pass});

…

If exists ….

Security – User Supplied Data

• Can you spot the vulnerabilities in the code?

• Traditional SQL:

• JSON:

name = req.query.username;

pass = req.query.password;

db.users.find({username: name, password: pass});

Security – User Supplied Data

What if we use the following query:

db.users.find({username: {$gt, “a”},

password : {$gt, “a”}}

JSON-based SQL Injection

• Node.JS, being a JSON based language, can accept
JSON values for the .find method:

• A user can bypass it by sending

http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html

http:///server/page?user[$gt]=a&pass[$gt]=a

http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html

PASSWORD

BYPASS
DEMO

JSON-base SQL Injection Defense

You can use the following:

Then

db.users.find({username: username});

bcrypt.compare(candidatePassword, password, cb);

JSON-based SQL Injection

This can lead to Regular Expression Denial of Service
through the {“username”: {“$regex”: “……..}}

db.users.find({username: username});

JSON-based NoSQL Injection

• So always validate the input length, structure and
permitted characters

• Remembering that Node.js is highly sensitive to
CPU-intensive tasks, and there’s a single thread for
user-code – ReDoS is really bad

• Recap

– With Node.js there is no web server

– Traditional web-servers (IIS, Tomcat) have strict separation
between the application, the server, and the OS

• Run-time Server Poisoning

– Node.js server runs in a single thread; if corrupted, server
behavior can be altered

– Alterations will last for all subsequent requests.

NodeJS as a Webserver

• EVALuates a string.

– At the context of the current applicative user within the
context of the application.

– In .net/java, eval can’t control the web server or other users’
threads

• Node.js is server-less so corrupting “current” thread, harms all
users

‘Evil EVAL’

Express.js (Wikipedia) :
“a Node.js web application framework, designed for building single-page,
multi-page, and hybrid web applications.”

app.get('/add', function(req,res) {

var data=req.query;

return res.render('index',

{message: eval(req.query.a + '+' + req.query.b)});

}

http://server/add?a=3&b=8 11 (!)

Routing

Express

Maintained in an ordered list (although called “stack” by express).

Routing Stack

/Add

/Remove

/page/:id

/ab*d

Func1()

Func2()

Func3()

Func4()

o The stack is accessible in runtime: app._router.stack

Server Routing

Run-time Server Poisoning

• ‘Stack’ is accessible at run-time (read &
write!)

• Replace existing routing with new one
– Affects all users connecting to system with NO apparent

impact to the source code

Routing Stack

/Remove

/page/:id

/ab*d

Func1()

Func2()

Func3()

Func4()

/Add/Add

Func5()

app._router.stack.splice(3,1); // remove routing entry

app.get('/add',function(req, res) // add new routing

{

return res.render('index',

{message: req.query.a * req.query.b}

);

});

Server Routing Change

Routing Stack

