Distributed Denial of Service (DDoS) attacks and Mitigation in Cloud Environments

Mark Shtern

DDoS Attacks

http://en.wikipedia.org/wiki/Operation_Payback

http://www.betterhostreview.com/wp-content/uploads/2013/08/ddos-attack.gif

DDoS Attacks

http://en.wikipedia.org/wiki/Low _Orbit_Ion_Cannon

http://blog.rivalhost.com/wp-content/uploads/2012/11/DDoS-network-map.jpg

Lower and Slow DDoS Attacks

- Attack aimed at bringing a target down but doing so quietly
- Examples
 - Sending partial http requests
 - Sending small data
 packets or keep alives in
 order to keep the session
 from going to idle
 timeout

http://www.funnyjunk.com/funny_pictures/ 3290705/Operation+9fag/

Layer-7 DDoS Attacks

• "An application layer DDoS attack is a form of DDoS attack) where attackers target the application layer"

(copied from "http://en.wikipedia.org/wiki/Application_layer_DDoS_attack")

- Layer-7 DDoS attacks represent 20% of all DDoS attacks in 2013 (from http://www.ababj.com/component/k2/item/4354-what-you-should-know-about-worsening-ddos-attacks)
- 37 percent of the respondents seeing application-layer attacks targeting this service compared to 24 percent last year

(from http://www.securityweek.com/multi-vector-ddos-attacks-grow)

Application layer attacks may become widespread

(from http://www.ababj.com/component/k2/item/4354-what-you-should-know-about-worsening-ddos-attacks)

DDoS Attacks

"There is a very clear trend we see in the increased use of complex multi-vector and application layer attacks,"

(from http://www.securityweek.com/multi-vector-ddos-attacks-grow)

"the reduction in dedicated security resources among respondent organizations"

(from http://www.securityweek.com/multi-vector-ddos-attacks-grow)

http://www.cnbc.com/id/101461573

Meetup.com is fighting a sustained battle against cyber attackers who are demanding

only \$300 to call off

Top daily DDoS attacks worldwide

http://www.digitalattackmap.com/#anim=1&color=0&country=ALL&time=16265 &view=map

Software Defined Infrastructure

- Example
 - Infrastructure-as-a-service (IaaS)
- Key property
 - Agility
- Pricing model
 - Pay as you go

http://en.wikipedia.org/wiki/Cloud_computing

The Changing Management Landscape

- Traditional IT duties
 - Resource capacity planning
 - Security of both infrastructure and production applications
 - Long release cycle
- SDI Ecosystem
 - Security responsibilities
 - Cloud provider infrastructure
 - Application owner application
 - Capacity planning: elasticity
 - Short release cycle

Elastic Applications

Autonomic/Adaptive system

https://wwwvs.cs.hs-rm.de/vs-wiki/index.php/(WS12-01)_Cloud/Dokumentation

Challenges

- Optimization resource managements
- Measurement of running application cost is complex task because of the cost of IaaS resources is not typically available from the provider
- Misuse infrastructure resources and reduction profit due to malicious activities
 - DDoS

Cost-of-Service Attack

 Is to increase the cost of a cloud deployment without necessarily denying service

http://www.rawstory.com/rs/2011/08/02/ne w-lead-in-1970s-us-skyjacking-case/

http://www.projektwerk.com/en/bl og/freelance/category/trends

Resource-consumption Attacks

- Attack increases resource utilization without a corresponding increase in revenue
 - Autoimmune resource attack → the user through carelessness or error incurs unnecessary charges on their own resources
 - Denial of service
 - Cost-of-service attacks → the goal is to increase the cost a cloud deployment without necessarily denying service
 - Low-and-slow DoS

Detection

Cloud efficiency metric

- Cost-benefit analysis that compares the current benefit derived from an application to the current cost of running that application on software-defined infrastructure
- Is the ratio of a benefit function:cost function, where both functions update as frequently as possible

Title: A runtime cloud efficiency software quality metric.

Authors: Shtern, Mark and Smit, Michael and Simmons, Bradley and Litoiu, Marin

Cost/benefit estimation

- Cost of total number of resources needed
 - Performance model
- Benefit is income generated by protected application

Prices

- Instances
 - On demand
 - Reserved
 - Spot
- Data Transfer
 - Data Transfer IN To Amazon EC2
 - Data Transfer OUT From Amazon EC2
- Storage
- Elastic Load Balancing
- Glacier

Cost Monitoring

- Twitter storm
 - distributed realtime computation system
- Cloud monitoring

http://www.clipartbest.com/clipart-di85pb8XT

Title: Distributed, application-level monitoring for heterogeneous clouds using stream processing **Authors**: Smit, Michael and Simmons, Bradley and Litoiu, Marin

Benefit Monitoring

- Twitter storm
- Information sources
 - Application, Google Adsense API, PayPal, Google Analytics

http://www.datagenicgroup.com/o ur-products/enterprise-datamanagement/technical.html http://www.clipartbest.com/clipart-di85pb8XT

Benefit Monitoring

- Revenue
- Advertising
- Brand awareness
- Customer satisfaction
- Number of repeat customers

Cloud efficiency metric

$$CE = \frac{benefit}{cost}$$

- CE > threshold
 - Profitable
- CE < threshold
 - Overspending

Performance model

- Models hardware/software resources
 - Hardware: CPU, Network
 - Software: Number of threads, Critical sections
- Estimate performance metrics
 - Throughput, response time, CPU utilization

Behavior Analysis

- Baseline
- Behavior Anomaly Detection
 - Statistical mode
 - Machine learning

Cloud Resource Management

- Cloud variability
 - Resources a cloud provider deems identical may have performance variations, by as much as 40%
- Non cost effective action
 - When allocated resources do not meet expectations, an adaptive system's response is to acquire more resources
 - Higher cost without expected benefits

Shark Tank

Shark Tank

 Is a separate cluster with full application capabilities designed to monitor suspicious users

Title: Towards Mitigation of Low and Slow Application DDoS Attacks **Authors**: Mark Shtern Roni Sandel Marin Litoiu Chris Bachalo Vasileios Theodorou

Software Defined Infrastructure

- Technology umbrella for infrastructure management
 - Chip-level virtualization accelerators
 - Virtual storage accelerators
 - Network package accelerators
 - Orchestration

Low & Slow DDoS Mitigation

Software Defined Network

 "is an approach to computer networking that allows network administrators to manage network services through abstraction of lower level functionality"

(from Wikipedia:

http://en.wikipedia.org/wiki/Software-defined_networking)

- Openflow
- Service-chaining (Ericsson Cloud System, Contrail (Juniper Network) Opencontrail)

Software Defined Network

- Overlay network
 - VPN/tunnel
- IPTables
- Application-Informed Request Routing

Application-Informed Request Routing

- Application-informed routing allows the application to inform routing decisions
 - Geography, lowest latency, common backbone providers, cost-aware routing

Title: Navigating the clouds with a MAP

Authors: Shtern, Mark and Simmons, Bradley and Smit, Michael and Litoiu, Marin

Auto-scaling

Decision engine

Decision engine

Conclusion

• Discussed algorithm to scale a web application, mitigate a DoS attack, or both, based on an assessment of the business value of workload

Thank you

Q&A