
Of Software
Security
Developing Secure Smart Contracts
Final - OWASP Toronto

January 23, 2019

Back To
The
Future

Whoami

• Jamie Baxter, M. Eng., OSCP, OSCE, CISSP, GPEN
• Independent Information Security Consultant

focusing on security assessments (applications,
infrastructures and smart contracts)
•Previously worked in aerospace, government

and finance sectors
•CTF’er, pen-tester, red teamer, appsec

Tonight

• What is a Smart Contract?

• Ethereum Overview

• Smart Contract Introduction

• Smart Contract Vulnerabilities

• Resources And Capture The Flags

What are Ethereum Smart Contracts?

• Def: A Ethereum Smart Contract is a program that defines a general
purpose computation which takes place on a blockchain or
distributed ledger

• Term originally coin by Nick Szabo

• The smart contract code facilitates, verifies, and enforces the
negotiation or performance of an agreement or transaction.

• While self-verifying, self-executing and tamper resistant smart
contracts may contain bugs, from programmer errors to flaws in the
compiler & toolchain to the platform itself.

Source:
https://blockchainhub.net/smart-contracts/
https://en.wikipedia.org/wiki/Smart_contract/

https://blockchainhub.net/smart-contracts/

Ethereum is a Transaction Based State Machine

World State
𝜎 𝑡

World State
𝜎 𝑡 + 1

Transaction (Tx)

APPLY
(Transition Function)

A transaction is a single cryptographically-signed instruction

What is a World State (𝝈)?

• It is the mapping between addresses and their account state
at a given time

World State 𝜎 𝑛

Address(𝛼1) Account State (𝜎[𝛼1]n)

Address(𝛼2) Account State (𝜎[𝛼2]n)

Address(𝛼3) Account State (𝜎[𝛼3]n)

SHA-3 Hash (Keccak-256)
Code Storage

What’s in an Account?
There’s actually two types of accounts

Externally Owned Accounts (EOA)

Address(𝛼1)

Account State (𝜎[𝛼1]n)

Nonce

Ether Balance

Contract Account

Address(𝛼2)

Account State (𝜎[𝛼2]n)

Nonce

Ether Balance

Code Hash

Storage Hash

StorageCode

A Word on Addresses

Externally Owned Account (EOA) Address (A)

Contract Accounts Address (A)

𝐴 = 𝐵96..255(𝐾𝐸𝐶 𝑃𝑈𝐵𝐾𝐸𝑌 𝑝𝑟) Where 𝑝𝑟 is the private key

𝐴 = 𝐵96..255(𝐾𝐸𝐶 𝑆𝑒𝑛𝑑𝑒𝑟 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑁𝑜𝑛𝑐𝑒)

Account Type Summary

Externally Owned Accounts

• Have a nonce

• Have an Ether balance

• Can send transactions
• Transfers
• Messages to Contracts or

other EOAs

• Only EOA can initiate
transactions

Contract Accounts

• Have a nonce

• Have an Ether balance

• Code hash

• Code execution is triggered
by a transaction

• Can call other contracts

Multiple Transactions are Combined in a Block

World State
𝜎 𝑡

World State
𝜎 𝑡 + 1

Transaction (T1)

Block (Bx)

Transaction (T2)

Transaction (T3)

Headers

Transition
Function

Ethereum Virtual
Machine EVM

Also Cryptographically
Signed

The Sequence of Blocks and World States

World State
𝜎 𝑡

World State
𝜎 𝑡 + 1

Transaction (T1)

Block (Bx)

Transaction (T2)

Transaction (T3)

Header

Transaction (T1)

Block (Bx-1)

Transaction (T2)

Transaction (T3)

Header

World State
𝜎 𝑡 − 1

…is the Blockchain!

Transition
Function

Transition
Function

The Transition Function -
Ethereum Virtual Machine (EVM)

• Turing complete instruction set 2^8
Op Codes, Fixed Length)

• 256-bit word machine
• 1024 element stack (of 256 bits each)
• 8-Bit opcodes
• No registers (purely stack based)
• Storage (persistent / per account)
• Memory (volatile)
• It’s purpose is run EVM Byte Code

(aka Smart Contracts)

What are Ethereum Smart Contracts?
• Smart Contracts are very similar to classes in C++ or Java
• All Smart Contracts are bound to an address and have an ether balance

associated with them
• Smart Contracts have a constructor (no overloading though)
• Solidity supports inheritance and polymorphism
• Other objected orientated concepts like visibility (private, public), state

variables and interfaces also all apply
• Compiled to EVM Bytecode and stored in the world state indexed by code

hash
• Contracts can be killed (suicide)
• Usually written in Solidity. But other languages exist ex: LLL

Life Cycle of a Smart Contract

Transaction to Create
• Issued by a EOA or another Smart Contract (contracts can create contracts)

Execution Driven by Transactions
• Receive transactions (calls, delegate calls)
• Perform actions
• Functions called from other functions

Suicide or “Freeze”

Every Contract is stored within the world state.

Contract Execution - Everything has a Price!

• Cost is measured in “GAS”
• The unit price of GAS in Ether is defined by the

initiator of the transaction.
• Creating a contract costs GAS
• All execution steps cost GAS
• The more complex the execution the greater the

cost
• Each transaction is provided a GAS stipend to begin

execution
• Each block is subject to the GAS limit of 8 million.

• Consider an expensive transaction like SSTORE (20000
Gas) means a block can write to store 400 times

• Ethereum network can process about 25 transactions per
second. Though multiple initiatives are underway to
greatly increase that

Partial List of GAS costs

Distributed Applications (dApps)
(Simplified)

Contract(s) Backend Web Gui Front End

An Example dApp - CryptoKitties!

A recent Dapp Ranking

Source: http://dappradar.com

Tools – A Sampling

Tool Descriptions Comments

Metamask A Browser Extension for Running
dApps

Wallet Integration

Mist Dedicated Dapp Browser Wallet Integration

Ganache Ethereum Personal Blockchain
(Now you can have a blockchain
too!)

“Ganache is a personal blockchain for
Ethereum development you can use
to deploy contracts, develop your
applications, and run tests”

Truffle Smart Contract Development
Suite

Compile and Deploy Smart Contracts

Remix IDE Online

Geth Ethereum Node Controller (can
join main or multiple test and
special purpose nets)

geth is the the command line
interface for running a full ethereum
node implemented in Go.

So, of course, all the past lessons in
software security have been applied
and Smart Contracts are now bug
free…

Thanks for coming out!

Everything old is new again!
• Integer Underflow / Overflow (SWC-101)

• Unprotected Sensitive Functions (Self-Destruct) (SWC-106)

• Exposed Private Data

• Bad Randomness (SWC-120)

• Re-Entrancy (SWC-107)

• Unsafe Authorization (SWC-115)

• Unsafe Contract Constructors (SWC-115)

• Out-Of-Bounds Write-Anywhere (SWC-124)

• Unprotected Withdrawal

There are currently 29 weakness patterns identified in Smart Contracts:
Source: https://en.wikipedia.org/wiki/Integer_overflow

Integer Overflows have been with us…for a
long, long time!

Source: https://en.wikipedia.org/wiki/Integer_overflow

Integer Overflow (Simple) - (SWC-101)

pragma solidity ^0.4.24;

contract OverflowAdd {

uint256 private balance = 1;

function add(uint256 deposit) public {

balance = balance + deposit;

}

Execution Run #1
balance = 1
add(100)
balance = 101

Execution Run #2
balance = 2^256
add(1)
balance = 0

Source: https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101

Integer Overflow (Simple) - (SWC-101)

pragma solidity ^0.4.24;

contract Overflow_Add {

uint256 private Balance = 1;

function AddSafe(uint256 deposit) public {

uint256 newBalance = balance + deposit;

require(newBalance >= deposit, “OVERFLOW DETECTED”);

balance += deposit;

}

}

Execution Run #1
Balance = 1
AddSafe(100)
balance = 101

Execution Run #2
Balance = 2^256
AddSafe(1)
Balance = 0 ‘ Exception Thrown

Source: https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101

Integer Overflow (More Complex) - (SWC-101)
pragma solidity ^0.4.5;

contract MegaTokenBank{
mapping(address => uint256) public Ledger;
uint256 constant PRICE_PER_TOKEN = 10000;

function MegaTokenBank(address _player) public payable {
require(msg.value == 1);

}

function buy(uint256 numTokens) public payable {
require(msg.value == numTokens * PRICE_PER_TOKEN);

Ledger[msg.sender] += numTokens;
}

function sell(uint256 numTokens) public {
require(balanceOf[msg.sender] >= numTokens);

Ledger[msg.sender] -= numTokens;
msg.sender.transfer(numTokens * PRICE_PER_TOKEN);

}
}

Problem:
Arithmetic Results in Integer Overflow

Solution
Ensure sanity checks are applied after arithmetic

Consider a library like SafeMath
(Source: https://github.com/OpenZeppelin/openzeppelin-
solidity/tree/master/contracts/math)

Source: https://smartcontractsecurity.github.io/SWC-
registry/docs/SWC-101

Exposed Private Data
There are no secrets on the blockchain

pragma solidity ^0.4.5;

contract SecretHolder {

uint256 constant MySecretValue=

0xABCDEF1010;

function GetSecret() public

payable {

require(msg.sender = owner);

}

}

Problem:
The World State is stored in each synced
node.

Hence your secret value is available by
manual inspection

Unprotected Self-Destruct (SWC-106)

contract SuicideMultiTxFeasible {

uint256 private initialized = 0;

uint256 public count = 1;

function init() public {

initialized = 1;

}

function run(uint256 input) {

if (initialized == 0) {

return;

}

selfdestruct(msg.sender);

}

}

Problem:
The self-destruct will destroy the
contract and freeze any ether attached
to the contract address.

Whether it’s $1 dollar or $150 Million
dollars

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106

“anyone can kill your contract #6995” – devops199
https://github.com/paritytech/parity-
ethereum/issues/6995

Roughly 150-300 Million remains “Frozen”

Source: https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4#code

Unprotected Self-Destruct (SWC-106) - Parity

Bad Randomness (SWC-120)
On the blockchain nothing is truly random

/*

* @source:

https://capturetheether.com/challenges/lotteries/guess-the-

random-number/

* @author: Steve Marx

*/

pragma solidity ^0.4.21;

contract GuessTheRandomNumberChallenge {

uint8 answer;

function GuessTheRandomNumberChallenge() public payable

{

require(msg.value == 1 ether);

answer =

uint8(keccak256(block.blockhash(block.number - 1), now));

}

function isComplete() public view returns (bool) {

return address(this).balance == 0;

}

function guess(uint8 n) public payable {

require(msg.value == 1 ether);

if (n == answer) {

msg.sender.transfer(2 ether);

}

}

}

Problems:
Miners can manipulate block numbers.
PC are far faster than Ethereum and can “run
ahead” of the block chain.

Source: https://smartcontractsecurity.github.io/SWC-
registry/docs/SWC-120

Bad Randomness (SWC-120)
On the blockchain nothing is truly random

Solution:
Only generate the “random” number AFTER the
guesses are committed.

This call RANDAO or Commit Pattern.

Source: https://github.com/randao/randao

// Stage one commit

// Guess the modulo of the blockhash 20 blocks from your guess

function guess(uint8 _guess) public payable {

require(msg.value == 1 ether);

commitedGuess = _guess;

commitBlock = block.number;

guesser = msg.sender;

}

function recover() public {

//This must be called after the guessed block and before

commitBlock+20's blockhash is unrecoverable

require(block.number > commitBlock + 20 && commitBlock+20

> block.number - 256);

require(guesser == msg.sender);

if(uint(blockhash(commitBlock+20)) == commitedGuess){

msg.sender.transfer(2 ether);

}

}

Source: https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120

Re-Entrancy (SWC-107)

/*

* @source: http://blockchain.unica.it/projects/ethereum-

survey/attacks.html#simpledao

* @author: Atzei N., Bartoletti M., Cimoli T

* Modified by Josselin Feist

*/

pragma solidity 0.4.24;

contract SimpleDAO {

mapping (address => uint) public credit;

function donate(address to) payable public{

credit[to] += msg.value;

}

function withdraw(uint amount) public{

if (credit[msg.sender]>= amount) {

require(msg.sender.call.value(amount)()); // Calls Sender Code

credit[msg.sender]-=amount;

}

}

function queryCredit(address to) view public returns(uint){

return credit[to];

}

}

Problem:
Ether is sent via call on the senders
amount() function before it is actually
deducted of the balance.

Withdraw can be called over and over
again in amount() before the amount is
deducted.

Source: https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107

Re-Entrancy (SWC-107)

function withdraw(uint amount) public{

if (credit[msg.sender]>= amount) {

credit[msg.sender]-=amount; // Update Balance First

require(msg.sender.call.value(amount)()); // Calls Sender

Code

}

}

function queryCredit(address to) view public returns(uint){

return credit[to];

}

}

Solution:
Update value before calling sender
contracts code.

Ideally use send() or transfer() as
opposed to calling the senders code

Source: https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107

The DAO Hack – Re-Entrancy

• Abused “split” function of DAO
contract

• $3.6 million Ether stolen
• $420 million to date
• Due to the way the contract was

structured a 27 day hold was in
place

• Community majority (89%)
voted to “Hard Fork” (creating
the divide between Ether and
Ether Classic)

• Actors who stole the ether were
actively involved in trying to the
influence the community to not
hard fork

Source: https://etherscan.io

Unsafe Authorization (SWC-115)

contract MyContract {

address owner;

function MyContract() public {

owner = msg.sender; // Properly set in constructor

}

function sendTo(address receiver, uint amount) public

{

require(tx.origin == owner); // Improper Check

receiver.transfer(amount);

}

}

Problem:
A crafted blockheader with chosen
tx.origin may be mined

If the block is “mined” a an actor may
take over the contract then.

Source: https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115

Unsafe Authorization (SWC-115)

contract MyContract {

address owner;

function MyContract() public {

owner = msg.sender; // Properly set in constructor

}

function sendTo(address receiver, uint amount) public

{

require(msg.sender == owner); // Improper Check

receiver.transfer(amount);

}

}

Solution:
Use msg.sender to validate who sent
the message

Source: https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115

Unsafe Contract Constructors (SWC-118)
/*

* @source: https://github.com/trailofbits/not-so-smart-

contracts/blob/master/wrong_constructor_name/incorrect_constructor.sol

* @author: Ben Perez

* Modified by Gerhard Wagner

*/

pragma solidity 0.4.24;

contract Missing{

address private owner;

modifier onlyowner {

require(msg.sender==owner);

_;

}

function missing()

public

{

owner = msg.sender;

}

function () payable {}

function withdraw()

public

onlyowner

{

owner.transfer(this.balance);

}

}

Problem:
By mis-spelling the constructor name a
default constructor is auto-generated
without the expected checks.

Source: https://smartcontractsecurity.github.io/SWC-
registry/docs/SWC-118

Unsafe Contract Constructors (SWC-118)

/*

* @source: https://github.com/trailofbits/not-so-smart-

contracts/blob/master/wrong_constructor_name/incorrect_constructor.sol

* @author: Ben Perez

* Modified by Gerhard Wagner

*/

pragma solidity 0.4.24;

contract Missing{

address private owner;

modifier onlyowner {

require(msg.sender==owner);

_;

}

function missing()

public

{

owner = msg.sender;

}

function () payable {}

function withdraw()

public

onlyowner

{

owner.transfer(this.balance);

}

}

Solution:
Making sure the names match in
spelling and case. Review output from
static analysis tools and compiler.

Source: https://smartcontractsecurity.github.io/SWC-
registry/docs/SWC-118

Out-Of-Bounds Write-Anywhere (SWC-124)

Problem:
Without appropriate bounds check index
offsets called directly or arrays will write into
nearby storage.

Often this includes over-writing the owner
variable potentially changing the owner of
the contract or modify other information on
the stack.

Will Smart Contract Control Flow
Exploitation become a thing? (We haven’t
seen the first buffer overflow yet).

function UpdateLedgerAtIndex(uint idx, uint entry) public {
Ledger[idx] = entry;

}

Source: https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124

Out-Of-Bounds Write-Anywhere (SWC-124)

Solution:
Ensure adequate bounds checking

function UpdateLedgerAtIndex(uint idx, uint entry) public {
require(idx < Ledger.length);
Ledger[idx] = entry;

}

Source: https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124

And of course, there’s exchange hacks!

Honey Pots

Contracts that appear vulnerable but are not
• Just have to send a little bit of Ether in… ☺

• Use of anti-disassembly tricks to hinder analysis

Great talk on research to detect such contracts
• Smart Contracts honeypots for profit (and probably fun) - Ben Schimdt

• Source: https://www.youtube.com/watch?v=Lj0J7_a1AVQ

Security Tools

IDE
• Remix (online IDE) - https://remix.ethereum.org/

Smart Contract Static Analysis

• Slither - https://github.com/trailofbits/slither

Smart Contract Dynamic Analysis (Symbolic Execution)

• Mithril Classic - https://github.com/ConsenSys/mythril-classic

• Manticore - https://github.com/trailofbits/manticore

Smart Contract Dynamic Analysis (Fuzzing)

• Echidna - https://github.com/trailofbits/echidna

https://github.com/trailofbits/manticore

To The Future

• Smart Contract development is still very new

• Increased use of design patterns in Smart Contract development to
address challenges like upgrading

• Educate developers on types of weaknesses

• Better tooling

• Use of standards when implementing Tokens (ERC* series tokens)

References
1) Smart Contract Weakness Classification

https://smartcontractsecurity.github.io/SWC-registry/

2) Trail Of Bits – Not So Smart Contracts

https://github.com/trailofbits/not-so-smart-contracts

3) Smashing Ethereum Smart Contracts for Fun and ACTUAL Profit

https://github.com/b-mueller/smashing-smart-contracts

4) Smart Contract Best Practices

https://consensys.github.io/smart-contract-best-practices/

5) Ethereum Yellow and Beige Papers

Yellow Paper - http://gavwood.com/paper.pdf

Beige Paper - https://github.com/chronaeon/beigepaper

https://smartcontractsecurity.github.io/SWC-registry/
https://github.com/trailofbits/not-so-smart-contracts
https://github.com/b-mueller/smashing-smart-contracts
https://consensys.github.io/smart-contract-best-practices/
http://gavwood.com/paper.pdf
https://github.com/chronaeon/beigepaper

Challenges!

1) Capture The Ether (By Steve Marx @smarx)

https://capturetheether.com/challenges/

2) Security Innovation Blockchain CTF (By Security Innovation)

https://blockchain-ctf.securityinnovation.com/

3) EtherNaut CTF (@ZeppelinOrg)

https://ethernaut.zeppelin.solutions/

https://capturetheether.com/challenges/
https://blockchain-ctf.securityinnovation.com/
https://ethernaut.zeppelin.solutions/

Thank you!

• Thank you to Judy (@daarkprincess) for bringing the cookies!

• Thank you to OWASP Toronto and George Brown for hosting!

• Thank you to everyone for attending!

Questions?

I’m listening…

