Cryptography

101




Who 1s Brodie McRae?

® Vancouver borntraised

® Hacking software checks to play games for free

® I[AMP stack developer before serialization was
cool

® Basically it was this or jail

® Currently head of security at Dapper Labs



Who 1s Brodie McRae?

My company built a blockchain called Flow.

literally rolled our own crypto.

Don’t roll your own crypto.

We



What 1s cryptography?

Secret messages using math / algorithms.

Today, cryptography 1s used to control who can see
certain information, and also guarantee the
authenticity of it.



Percentage of Web Pages Loaded by Firefox Using HTTPS

(14-day moving average, source: Firefox Telemetry)

0% . Allusers

USA users
Japar I R UIVERTS 77.99731% 4

80%

70%

60%

50%

Percent of Pageloads over HTTPS (14 day moving average)

0% 2014 2015 2016 2017 2018 Z(M

)
N . - .
A T 2070, 6 wnaecping basicanty everytning,



Percentage of Web Pages Loaded by Firefox Using HTTPS

(14-day moving average, source: Firefox Telemetry)

{ Traffic Served Over TLS

Last 24 hours

None (not secure) ® TLSv1.2 TLS v1.3

| 61 27,755 1,075,925

3 I TLS v1.3

; 97%

?E 10%

E 0% 2014 2015 2016 2017 2018 Z(M

N , - .
;%ﬁ E;f@/%c%& In 2020, it underpins basically everything.



What 1s cryptography?

The word cryptography
comes from Greek,

CryptoO secret
graphy writing




Terms

We need to lay out some terms.

We really do.



Terms

ls and 0Os. Even this text you’re reading 1is
fundamentally just 1s and O0s.



Terms

® Normal, meaningful data that a computer or person
can understand on 1ts own.

® May not be human readable
O Binary program code
O ‘Encoded’ (e.g., base6t4)



Terms

Converting data from one representation into some
other representation using an algorithm (set of rules
and steps) .

Fasily reversible.



Encoding

Binary 01100010 01100001 01100011 01101111 01101110

\ ‘ Glyph
Binary | O ex
'63 |'65 | '67
ASCII bacon 110 0000 | T40._96 | 60 @| -

110 0001 | 141
110 0010 | 142
110 0011 | 143

Baseoc4 YmFjb24= 110 0100 | 144




Why ?

®¢ Humans are bad at reading binary.

@ Different computers have different
architectures and capabilities, so common
languages help.



Email example

Brodie McRae <bronie@mylittlepony.hasbro.com>
Alex <alexs@finewineburg.io>
Super sweet pic of nothing
multipart/mixed; boundary=45eg2claa958146c04054e41653a

—--45eg2claa958146c04054e41653a
text/plain; charset=UTF-8; format=flowed; delsp=yes

Yo here is some pretty sweet nothingness can you dig it.
—--45eg2claa958146c04054e41653a
image/png; name="nada.png"
attachment; filename="nada.png"
base64

1VBORWOKGgoAAAANSUhEUgAAAAEAAAABCAQAAACIHAWCAAAACOLIEQVR42mNkYAAAAAYAAJCBOCSA
AAAASUVORKSLCYII=
--45eg2claa958146c04054e41653a--



JWT example

eyJzdWIiOiIxMjMONTY3ODkwIiwibmFtZSI6Imt0
bTc5MHIiLCIpYXQiOjEIMTYyMzkwMjJ9.L7602mf70gDFYZzhFOPhKWQFNnjIw8P2K-GFDxJjLeiw

echo

"eyJzdWIiO1iIxMiMONTY30DkwIiwibmFtZSI6ImtObTcSMHIILCIPYXQiOJEIMTYyMzkwMjJ9" |
base64 -D

{"sub":"1234567890" ,"name" : "ktm790r" ,"iat" :1516239022}



Terms

® Data that cannot be understood by a human or
computer without additional information

(a Y
@ If it’s well done, 1t appears to be random.

® Usually not text.



Terms

Using a to convert into
data that, without the , 1s meaningless.



Encryption

Using a secret to convert cleartext into
without the secret, is meaningless.

“bacon” == encrypt (“bacon”,

!

\\ Qe 4

@
*

l' #

“bacon” 4= decrypt (“1 i

144

data that,

secret)

4

secret)



Encryption

Using a secret to convert cleartext into data that,
without the secret, is meaningless.

Secret: “shift 13 places 1n the alphabet for each
word character”

cleartext (cleartext, secret)
“flat dow truth earth” = “syng gbj gehgu rnegu”
Clphertext (ciphertext, secret)

“syng gbj gehgu rnegu” = “flat dow truth earth”



Encryption

In practice, encrypted data should appear highly
random.

0.001%

<0.0001% =0.0001%

60

Bit position



Encoding vs Encryption

Encoding takes source data and applies
steps (public algorithm) to change its

form.

Encryption requires the source data

Binary | Oct Dec Hex

1100000 | 140 96 | 60
1100001 | 141 97 | 61
1100010 | 142 98 | 62
1100011 | 143 | 99 | 63
1100100 | 144 64

Glyph
63 | '65 | '67
@ | -




Encoding Encryption

PGP encryption often combines the two,
encoding 1its encrypted data into baseb64:

S head -n 5 test.pgp

hQIMAwW087e15VhOUAQ/ 6AWEtMOT2LFygxtvPIXrzEpM/1J7VLhAG6SvmGMI PuN30b
J1LYnBlvfmMj+olZbmMjiwKDgPvOr4a7QRH8nrnQs2gmIVdUy/UNptuiNtiop8MZ
+3ZPESsZs+CNa/mr4dwHuoZtwJotk++ObCxW/mgY1ls+0aofP4MBgzSYLAPBOJ6VCX



Encryption 101

Caesar’s dead, his knowledge lost, so how does
encryption work today?

“Using a to convert into
data that, without the , 1s meaningless.”

..but how?



Terms

A logical operator that takes two 1nputs (

R P O O
@ ® & @
R O P O

O = = O

“A or B, but not both.”

<




Ritwise XOR

You can XOR two bytes of data, but it is a

“bitwise” operation”:

01001011
10001010

e 11000001
10001010

01001011

One of the special
properties of XOR is that
it’s reversible:

A ® B ®B = A

B®B =20

A ® (0 =A



“Perfect” One Time Pad

A 1s considered “perfect” if random
and used Only once. |K| > |m| ; Shannon’s theorems
cleartext

01100110011001010111001001101110011000010110111001100100

OTP “key”

@

ciphertext T
00000100000001000001000100000001000011110000111100001101



“Less than perfect” Encryption

“How do I encrypt 10GB of data with a 256-bit
key?”

® FCB Plaintext
HINEEEENENEEEN
e CBC {
block cipher
e CTR KV encryption

|

OTTITTTTTTTTT]
Ciphertext




FCR (Electronic Code Book)

Plaintext Plaintext Plaintext
CITTITITITTITT CITTTTITITITT CITTITITITITT
® | ® | ® |
Key block C|p_her Key block C|pher Key block upher
encryption encryption encryption

| | |

[TTTTTITTTTTTT] CITTTTITTITTTITT] CITTTITTTITTITT]
Ciphertext Ciphertext Ciphertext




FECB’s determinism:

(a) Plaintext image, 2000 by 1400
pixels, 24 bit color depth.

(c) ECB mode ciphertext, 30 pixel
(720 bit) block size.

(e) ECB mode ciphertext, 400 pixel
(9600 bit) block size.

BROKEN

(b) ECB mode ciphertext, 5 pixel
(120 bit) block size.

(d) ECB mode ciphertext, 100
pixel (2400 bit) block size.

(f) Ciphertext under idealized en-
cryption. Lvh (cryptolOl)



CBC (Cipher

Plaintext
CITTTITTITTIIT]

Initialization Vector (IV)
(TIITIITIITI 7] ——

block cipher
encryption

v
HEEEREREEEEER

Ciphertext

Block Chaining)

Plaintext

EEEEEENENEEER

Key —

-
>

mode

Plaintext

HNNEEEEEEEEER

block cipher
encryption

|
\

HEEEER

f

Ciphertext

Key —

.
>

block cipher
encryption

\

A

HNEEEELNEEEEER

Ciphertext




CTR

Nonce
c59bcf35..

Counter
00000000

(e.qg.,

Key ——>

V

block cipher
encryption

Plaintext ———

HNEENEENEEEER

GCM)

Nonce
c59bcf35..

Counter
00000001

Key ——>

\

block cipher
encryption

Plaintext ———

HNEEEEEEEERER

Ciphertext

Counter Mode

Nonce
c59bcf35..

Counter
00000002

Key ——

V

block cipher
encryption

Plaintext ———

Ciphertext

Ciphertext




Terms

Converting any piece of data, using an algorithm, into

\\ 144

a typically much smaller - but - 1ldentifier.



Terms

Think fingerprinting:

@ Algorithm: taking someone’s fingerprint

® Input: actual data (real person w/ finger)

® Output: unique identifier called a hash, or a
digest (fingerprint image)

Analogy 1is somewhat flawed because the output should
never resemble (or give any information about) any
part of the input.



Terms

brodiemcrae@bmbp ssh-add -1
048 SHA256 :W9BsLBtRAImrkeIA4/b1QuSdfynTqa2fRUams6LW16¢c brodig
P56 SHA256 :ZQoagitruNQB7kmWDXapFjcisvgxZvTgkk4Q9x4109c brodie.
brodiemcrae@bmbp 2 ssh-add -h 2>&1 | grep fing
List fingerprints of all identities.
Specify hash algorithm used for fingerprints. r

Analogy 1s somewhat flawed because the output should

never resemble (or give any information about)
part of the input.



Hashing - SHA1l example

Converting any piece of data, using an algorithm, into a typically
much smaller - but “ ” - identifier.

echo “OWASP2019” | shasum
echo “OWASP2020” | shasum

echo “OWASP2020.” | shasum



Hashing - SHA1l example

A\ ”

refers to collision resistance

Should be extremely hard to find more than one input that results in

the same Output N\ Like, so hard it would take Google’s idle compute weeks to find one.

Small changes to input should make significant, cascading changes to

the Output .« « But make sure your padded input and output block sizes are different.



Hashing - SHA1l example

What about output size > input size, like these?

“OWASP2020"
“OWASP2021”

\\ 144
L]

Block padding



Hashing - SHA1l example

What about output size > input size, like these?

“OWASP2020"
“OWASP2021”

\\ 144
L]

Block padding



Hashing - SHA1l example

What is this output, anyway?

“OWASP2999” 0a6c52a0badd’7700deal7361lcdccdfba9a36b0615
“OWASP3000” 70809fa061004b0297ca7£7503347cb005¢c9cb94
“OWASP3001” 0550ae06fb0547d362cb562bf8bdd551c7£f8b413c



Hashing - SHA1l example

What is this output, anyway? as hex:
“OWASP2999” 65 Ob d’/ (el
1c cd a’ 6b

SHA-1 output 1s 160 bits
20 bytes
40 hex char

07
15



Hashing vs Encryption

Use cases

@ Hashing 1s used to validate data
O Message 1ntegrity - paired with original value
O Passwords - don’t need original value

® Fncryption i1s used to keep data secret
O Keep data safe in transit
O Stored data that is stolen cannot be read



Hashing + Encryption

® Protect encrypted data from being tampered with

® Which i1s best? Arguments for both

® Bonus term: MAC “message auth codes”



Data 1n Transit

establishing a temporary

channel for comms.

Often “signed” keys for auth, then shared keys for

the session.



Data at Rest

To use an analogy:
transit armored truck moving valuables between banks

rest Storing valuables in a safe



Key Exchange

So, how can two parties set up a secure channel
when someone 1n the middle 1s listening to

everything?

It turns out, there are novel ways to exchange
secrets through/despite an intermediary.



Key Exchange 1n Abstract

Say Alice wants to send a super secret message to

Bob in a secure channel.




g
% Key Exchange in Abstract

>,

L

L)

L

AN Alice seals her heartwarming words with her lock.




Key Exchange 1n Abstract

Bob can receive the sealed message,

own lock.

Eve

and apply his

Bob




=N Key Exchange in Abstract

Bob sends the message back, and Alice removes her
lock.

Alice




Key Exchange 1n Abstract

Finally, Alice sends the message back to Bob,

removes his lock:

Bob’s heart is thusly warmed.

who




Key Exchange: Diffie-Hellman

The preeminent example of key exchanges.

To explain DH, we need to touch on something.
Something dark. We need more math.



DH 101: Modular arithmetic 1/3

24hrs to 1l2am/pm:
1619 hrs mod 1200

= 419 (pm)



DH 101: Modular arithmetic 2/3

Inverse of an exponent

® Exponentiation

RO o= (1l €010

® TLogarithm

1ogm(1000) = 3

Given a base (10) and an
exponent (3), it’s really easy
to compute a result (1000)
modulo some prime number.

Given a modulo prime result of
some known base and secret
exponent, it’s extremely hard
to determine the original
exponent.

It can be said that this
problem cannot be solved in
polynomial time.



DH 101: Modular arithmetic 3/3

® Original calc

107 mod 13 = 12

® TLogarithm

1og,,(?) =

CruxX: What possible exponents, modl3,
have a remainder of 127

Thisds ealle&tla_ﬁ) disesete
qu compftflrt,:éil ')aogiéﬁ'treally Al

(1000)
modulo some prime number.

F8r a Iargrgoguri'[)ng modulu

iven a rime result of

vaJ:ue, lﬁhﬂﬂm@nd secret
ORI 1§57 SRR

exgensite. Hard to calculate,

easV.LQ Yerifysqa [z fri

problem cannot be solved in
polynomial, time.



Diffie Hellman Walkthrough

Wikipedia kinda says it best. Alice and Bob want to share a secret.
They agree publicly to use a prime number, 23, and a base, 5.

Alice chooses a secret wvalue:
Bob chooses a secret wvalue:

Alice calculates 54 mod 23 = 8
Bob calculates 54 mod 23 = 19

Alice and Bob share 8 and 19 with each other.



Diffie Hellman Walkthrough

Public prime, 23, and base, 5

Alice’s secret:
Rob’ s secret:

step 1. Alice: 5%6 mod 23 = 8 (5% mod 23)° mod 23
Bob: 5415 mod 23 = 19 :(5b mod 23)° mod 23
Alice and Bob exchange 8 and 19,
publicly, then:
Alice: 194 mod 23 = 2
Step 2:

I
N

Bob: 84 mod 23



Elliptic Curves

A line through an elliptic curve
will intersect with the curve in

three places.



Elliptic Curves

The result - C - can be used as an

input into finding another point.



Elliptic Curves

Typical “curve,” like P-256:




Elliptic Curves

e.g., logjam - “export grade” DH

Equivalent strength SSH Keys:
RSA: 2048 bits
DSA: 256 bits



Elliptic Curves

OK, but why curves?

e.g., legjam - “export grade” DH

ssh-add -1
RSA: rp48 SHA256 :W9BsLBtRAImrkeIA4/b1QuSdfynTqa2fRUams6LW16c brc
. 256 SHA256:ZQoagitruNQB7kmWDXapFjcisvgxZvTgkk4Q9x4109c broc
FECDSA:; .
ssh-add -h 2>&1 | grep fing
-1 List fingerprints of all identities.
-E hash Specify hash algorithm used for fingerprints.




Elliptic Curves

Curves are used for encryption and
for DH key exchanges because
secret starting points are to

derive.

X25519 is the DH exchange
based on my fave, Curve25519

(So-named becausdS3it d8es
Prime p = 2 )



Protip: Just use whatever Microsoft
backs

The A Register’

Biting the hand that feeds IT

Kidding aside I
think cloudflare

rolled a sweet Go

TRE SOFTWARE SECURITY DEVOPS BUSINESS PERSONAL TECH SCIENCE

Security

Microsoft throws crypto foes an

implementation, 3x

+ perf .. soO ..

untouchable elliptic curveball

Redmond's new, free, crypto library dubbed FourQ
leaves P-256 swinging and missing




Symmetric vs. Asymmetric

® Symmetric: same key 1s used to encrypt and
decrypt (in transit, the temporal session key.
at rest, typically a fixed encryption key)

® Asymmetric: private key used to decrypt/sign,
public key used to encrypt to person that
holds private key, and validate messages
*from* said keyholder.



TLS and HTTPS

Common misconception that TLS uses private/public
keypalir for session encryption. Good
implementations authenticate with these keys and
then negotiate (and frequently cycle) throwaway
session keys. Related:

Typical:
RSA 2048-bit server key, signed by a CA
AES 256-bit session key for cipherstream



“cipher suite” deconstruction

ECDHE-RSA- -GCM-SHA256
SHA 256 HMAC

Galols Counter Mode

RSA keyt+signature
Ephemeral
Diffie-Hellman
Elliptic Curve



TLS: browsers,

websockets..

L=l DigiCert High Assurance EV Root CA

Protocol: TLS 1.3

L B github.com

Signature Algorithm

Private Key: RSA 2048 bit

Not Valid After

Encryption: AES
w/Counter mode

Public Key Info
Algorithm

Exchange: X25519

Key Size
Key Usage

Signatures: SHA-256

Signature

b [ DigiCert SHA2 Extended Validation Server CA

SHA-256 with RSA Encryption
(1.2.840.113549.1.1.11)

None

Monday, May 7, 2018 at 5:00:00 PM Pacific
Daylight Time

Wednesday, June 3, 2020 at 5:00:00 AM Pacific
Daylight Time

RSA Encryption ( 1.2.840.113549.1.1.1
None
es:C6 3C AAF23C970C 3A ...

2,048 bits
Encrypt, Verify, Wrap, Derive

256 bytes : 70 OF 5A 96 A7 58 E5 BF ...

Key Usage ( 2.5
YES

wzéﬁ.|

\ Other |

Sources Network Security  »

Security overview

This page is secure (valid HTTPS).

Certificate - valid and trusted

The connection to this site is using a valid, t
server certificate issued by DigiCert SHA2 H
Validation Server CA.

View certificate

onrection - secure connection settings

The connectio
at icated using TLS 1.3, X25519, and
AES_128_GCM.

this site is encrypted and

Resources - all served securely

All resources on this page are served securg







Bonus reading

®@ Dive deeper into applied crypto
0 CryptolOl (lvh) - bit deeper
m cryptolOl.io
@) Graduate applied cryptography - lot deeper
m crypto.stanford.edu/~dabo/cryptobook/
O Nigel Smart’s UMD intro crypto

o I’ve heard coursera.org/learn/crypto is goed?

® Guidelines
0 safecurves.cr.yp.to
O cipherli.st
(reference TLS config guides)
0 github.com/ssllabs/research



