
The Secret Life of
Malicious Packages

OWASP Vancouver - June 19, 2025

Megg Sage

About me

● Senior Product Security Engineer at

PagerDuty

● Previously a software engineer

● [Insert witty quip]

● Local Vancouverite

● Love sharing knowledge

What are malicious dependencies?

● What is a dependency?

● What is a malicious dependency?

● How is this different from a vulnerable dependency?

Where are they?

● Public Programming Language Package

repositories

○ npm (node.js)

○ PyPi (python)

○ NuGet (C#)

○ Maven (Java)

○ RubyGems (ruby)

● Git repositories

● OS Package Repositories

What do they do?

● Lots of things!

○ Cryptomining

○ Ransomware

○ Data exfiltration

○ Destructive actions

● Often target developers

● Malicious behaviour often obfuscated

○ Download secondary payloads

○ Obfuscated code

So how big is this problem?

● Big, and it keeps getting bigger

Not just packages...

● IDE Extensions

● Browser Extensions

● Github Actions

Tactics of Malicious Dependencies

Typosquatting

● Mimicking names of legitimate packages
○ request or requesuts instead of requests
○ @typescript_eslinter/eslint instead of

@typescript-eslint
● Appears to be the most common tactic

Example
● March 2024 PyPi typosquatting attack

○ Targeted 16 packages, 566 total variations
○ PyPi temporarily suspended user sign ups and new

project creation
○ Examples of fake "pillow" packages:

● oillow
● pullow
● pilkow
● pilloa
● pilpow
● pollow
● pirlow

● pirlow
● pillkw
● pill9w
● p9llow
● p8llow
● pilliow
● pjllow

● pilloq
● pilloo
● piolow
● pillo2
● piplow
● pillox

Trojan Packages

● Pretend to be a legitimate package

● Include that does what the package says, but

also include hidden malicious features

● Examples:
○ discordpydebug

■ Discord utility - 11,000 downloads

○ bitcoinlibdbfix
■ Fixes for a Python module bitcoin lib -

1,101 downloads

○ python-alibabacloud-sdk-core

Some don't pretend at all

● Not all try very hard to hide
● A batch of malicious dependencies were

recently discovered after having been on
npm for 2 years, some with very "sus"
names:
○ js-bomb
○ js-hood
○ vite-plugin-bomb-extend
○ vite-plugin-bomb
○ vite-plugin-react-extend
○ vite-plugin-vue-extend
○ vue-plugin-bomb
○ quill-image-downloader

npm is slow at taking down malicious pkgs

AI Package Hallucinations

(Sample from Sept 2023)

Not real!

● When LLMs make up package names in their suggestions

AI Package Hallucinations

● "Slopsquatting"

● 2023 with ChatGPT 3.5

○ Node.js - 20%

○ Python - 35%

● 2025 with over a dozen LLMs

○ 5-38% hallucination rate

Threats from existing packages

Dependency Confusion

● Uploading a package to a public repository of the same name as one in

private or internal repository

● Examples:

○ 2021: Internal dependencies at PayPal, Microsoft, Apple, etc.

○ 2022: PyTorch

Package Hijacking

● Compromising accounts of package owners and

uploading new malicious versions

● Typically package repository or github accounts

● Account take over done via...

○ Expired domains

○ Compromised credentials

○ Social Engineering

● 'rand-user-agent' - 45,000 weekly downloads

compromised via automation token

Real World Examples

The long-game: XZ Utils

● In 2024, a backdoor was introduced into the

Linux utility XZ Utils

● Social engineering attack targeting the sole

maintainer of XZ Utils that took place over 3

years

● Discovered by luck before the package was

widely included in mainline OS releases

The one that made it through: TJ Actions

● GitHub Actions is a CI/CD platform with reusable

components

● In March 2025, it was discovered that the

component tj-actions/changed-files was

compromised and modified to steal secrets

● The compromise went through public repositories

allowing visibility into the attack

So now what can we do about this?

The basics...

● Education and awareness!

● General precautions:

○ Verify package names

○ Check package health

○ Scan package code

● Weaknesses:

○ Tediousness

○ Human error

○ Obfuscated code

○ Attackers often try to make their repos look more legitimate

But I have [insert SCA tool name] that
scans for vulnerable packages!

Why SCA tools aren't so great for
malicious packages
● SCA tools are commonly used to scan for vulnerable dependencies

● Weaknesses:

○ Only detect known malicious dependencies

○ Must be ran before the dependency is used

○ Testing or building steps in a pipeline may occur before or in

parallel to SCA scans, making CI/CD vulnerable

○ May not scan dev dependencies by default

● These are still useful and important tools!

What else can we do?

● EDR (AKA fancy anti-virus)

○ Can detect known threats and some unknown

threats based on behaviour

■ Works for ransomware or cryptomining

○ Stealthy behaviour is harder to catch

What else can we do?

● Private package repositories

○ Internal repositories for public packages

○ Allow for more control

■ Can restrict to only approved packages

○ Usefulness depends on configuration and

corporate policies

What else can we do?

● Package Integrity checking

○ Only verifies signatures

○ Not useful if malicious packages are

published via legitimate accounts

● Source code firewalls

In closing...

● Malicious dependencies are becoming increasingly common

● Typically target developers

● Many different tactics

● Many options for protecting against them

○ No one solution is perfect

● Forever and always, the Onion approach!

Connect with me!

LinkedIn:
Megg S

https://www.linkedin.com/in/megg-s-04152367/

