Black Box versus White Box: Different App Testing Strategies
John B. Dickson, CISSP

• Learning objectives for today’s session
 – Understand what a black box and white box assessment is and how they differ
 – Identify tools that support black and white box testing
 – Understand testing coverage and limitation of automated black and white box tools
• Denim Group Background

 – Professional services firm that builds & secures enterprise applications
 – Application security services include:
 • Black-box and white-box assessments
 • Secure application development and remediation
 • Application security training for developers, security professionals, and auditors
 • Software development lifecycle development (SDLC) consulting
 • Application identity management enablement
 – Competencies in the following areas:
 • PCI pre-assessment readiness
 • Secure agile development
 • Threat modeling

• Personal Background

 – 15-year information security consultant background
 – Principal at Denim Group
 – Ex-Air Force security analyst at AFCERT
 – Trident Data Systems, KPMG, SecureLogix, and Denim Group information security consultant
 – Works with CISOs to help them develop and deploy more secure systems and applications
 – CISSP since 1998
• **Key Challenges**

 – *Why is it that serious web application vulnerabilities still exist in organizations what have been conducting network and host-based assessments for years?*

 – *How do information security professionals reduce the risk that Internet-facing applications represent to the enterprise when they have little control over development efforts?*

 – *How can they quantify the risk when application security scanners identify only ~30% of the most serious flaws that exist in large-scale web software systems?*

Software Implementation – Perfect World

```
Actual Functionality

Intended Functionality
```
• Nature of Application Security Problem

 – Most security professionals do not have a development background
 – Security managers do not control application development
 – Security requirements rarely are central to development priorities
 – Attackers are focusing more on web applications as network perimeters are more secure
 – Fielded applications developed over the years are largely insecure
 – Who gets fired first when penetration occurs via web application?
1998 Network Security Question?

Firewall?

2008 Application Security Question?

Automated Application Scanner?
• **Application Penetration test**

 - Controlled test from the outside simulating a sophisticated attacker with limited information
 - Goal: exploit a vulnerability to gain system level access or obtain sensitive data
 - Somewhat a “capture the flag” exercise to prove a point – can potentially show you one route to gain access, not all possible approaches
 - Typically conducted to validate previous assessments or to prove a theory

 Focus of the presentation will be assessments, and not penetration tests

• **Types of Application Vulnerabilities**

 - **Technical**
 - Implementation flaws introduced at the keyboard
 - Straightforward to identify and mitigate
 - Most analogous to TCP vulnerabilities
 - Scanners best suited to identify technical flaws

 - **Logical**
 - Architectural or design flaws typically introduced before coding
 - Much harder to identify – potentially painful to mitigate
 - Fix might include an architectural re-write
 - Scanners deeply limited in ID’ing logical flaws
Black Box Assessments

- Automated application security testing that view the security state of an application from the outside looking in
 - Mirrors the perspective of an outside attacker
- Infers that certain vulnerabilities exist by sending inputs to an application and analyzing outputs
- Does not involve review of application source code
• **Pro’s for black box assessment approach**

 – *Well understood by security professionals*
 • Network vulnerability analogy
 – *Measures security state of environment in which application resides*
 – *Can quantify security risks of third-party components or other resources outside the application*

• **Con’s for black box assessment approach**

 – *Results tell you what vulnerabilities exist, not how or why they exist*
 – *Can only test the attack surface they identify*
 • May be additional endpoints with vulnerabilities
 – *Provides less input for remediation*
• White Box Assessments
 – Involve reviewing application source code to determine the difference between what security was designed in the system and what was built
 – Typically complemented with an architectural design review to ID non-code problems

• Pro’s for white box assessment approach
 – Identifies exactly where vulnerabilities exist and why/how they occurred
 – Tells you definitively whether code design is implemented in source code
 – Easier to begin remediation because the exact location of the vulnerabilities has been identified
• **Con’s for white box assessment approach**

 - Potentially can generate a large number of false positives ("noise") if source code analyzer is not tuned well
 - Provides less feedback on environmental components that affect the security of an application
 - Likely the sole domain of developers – security staff are less trained to interpret results
 - Sometimes hard to identify context

• **Black box automated assessment tools**

 - HP (SPI Dynamics) WebInspect & DevInspect
 - IBM Rational (Watchfire) AppScan
 - Cenzic Hailstorm
 - NT Objectives NTO Spider
 - Acunetix Web Vulnerability Scanner
• White box assessment tools

 – **Major product vendors:**
 • Fortify Source Code Analyzer
 • Ounce Labs
 • Coverity Prevent SQS

 – **Attributes**
 • Licenses are often priced by LOC
 • Most web languages, some legacy languages

• Limitations of Automated Tools

 – *Only find Technical flaws in applications*
 • What about Logical flaws?

 – *Can require sophisticated users to drive them correctly*

 – *Can provide a false sense of security*
Potential security points in SDLC

- OWASP Top 10 Critical Web Application Security Vulnerabilities
 - Cross Site Scripting (XSS)
 - Injection Flaws
 - Malicious File Execution
 - Insecure Direct Object Reference
 - Cross Site Request Forgery
 - Information Leakage and Improper Error Handling
 - Broken Authentication and Session Management
 - Insecure Cryptographic Storage
 - Insecure Communications
 - Failure to Restrict URL Access

http://www.owasp.org/documentation/lopten.html
Contact Information

John B. Dickson, CISSP
Principal
Denim Group, Ltd.
John.Dickson@denimgroup.com
(210) 572-4400