Detecting malware even when it is encrypted

Machine Learning for network HTTPS analysis

František Střasák
strasfra@fel.cvut.cz
@FrenkyStrasak

Sebastian Garcia
sebastian.garcia@agents.fel.cvut.cz
@eldracote
More than 90% of web traffic is encrypted

Percentage of HTTPS browsing time by Chrome platform

https://transparencyreport.google.com/https/overview?hl=en
More than 80% of web traffic is encrypted

Percentage of Web Pages Loaded by Firefox Using HTTPS

(14-day moving average, source: Firefox Telemetry)

https://letsencrypt.org/stats/
From 10% to 40% of all malware traffic is encrypted

- 10-12% of all Malware uses HTTPS

- 37% of all Malware uses HTTPS

- From all HTTPS malware, 97% uses port 443, and 87% uses TLS
 - Stratosphere Nomad Project. Jan. 2018
Encryption interferes with the efficacy of classical detection techniques
Do we need TLS inspection?
TLS inspection

● Advantages
 ○ TLS inspection can use classical detection techniques

● Disadvantages
 ○ TLS inspection may be expensive
 ○ TLS inspection is computationally demanding (can be slow)
 ○ TLS inspection does not respect the original idea of HTTPS (privacy)
Our Goal

To find features and methods to analyze HTTPS traffic without decryption and detect malware with high accuracy, low false positive rate.
What is SSL/TLS?: handshake

Client Hello

Server Hello with certificate and decision about the parameters.

If the certificate is trusted, creates a symmetric session key and encrypts it with the server's asymmetric public key.

Server decrypts the encrypted session key using its asymmetric private key to get the symmetric session key.

Server and Browser now encrypt and decrypt all transmitted data with the symmetric session key.
What is SSL/TLS?: Certification path

- A root CA
- An intermediate CA
Privacy does not mean Security!
Dataset

- Pcaps/flows with HTTPS traffic
- Malware and Normal
- 4 sub-datasets
- 163 malware and normal captures
Dataset

- **CTU-13 dataset - public**
 - Malware and Normal captures
 - 13 Scenarios. 600GB pcap
 - https://www.stratosphereips.org/datasets-ctu

- **MCFP dataset - public**
 - Malware Capture Facility Project. (Maria Jose Erquiaga)
 - 340 malware pcap captures
 - https://stratosphereips.org/category/dataset.html

- **Own normal dataset - public**
 - 3 days of accessing to secure sites (Alexa 1000)
 - Google, Facebook, Twitter accounts
 - https://stratosphereips.org/category/dataset.html

- **Normal CTU dataset - almost public**
 - Normal captures
 - 22 known and trusted people from department of FEE CTU
Features and Methods
Bro logs

pcap file

Bro IDS

Bro logs
- conn.log
- ssl.log
- x509.log
- dns.log
- ...

https://www.bro.org/
SSL aggregation

conn.log

ssl.log

x509.log

SSL aggregation
ssl-connect-unit

ssl-connect-unit ID:
- Source IP
- Destination IP
- Destination Port
- Protocol

1. SSL aggregation
2. SSL aggregation
3. SSL aggregation
4. SSL aggregation
SSL aggregation

1. SSL aggregation
 \{SrcIP, DstIP, DstPort, protocol\}

2. SSL aggregation
 \{SrcIP, DstIP, DstPort, protocol\}

N. SSL aggregation
 \{SrcIP, DstIP, DstPort, protocol\}

Raw data
- conn.log
- ssl.log
- x509.log

Connection features
- Numbers, lists, strings

High level features
- Mean
- Standard deviation
- Weighted mean
40 Features of ssl-connect-unit. Examples:

- Mean and standard deviation of duration
- Mean and standard deviation of number of packets
- Mean and standard deviation of number of bytes
- Ratio of TLS and SSL version
- Number of different certificates
Example Feature: Mean of 2nd level time difference

1. SSL aggregation Time = 06:00
2. SSL aggregation Time = 06:20
3. SSL aggregation Time = 06:40
4. SSL aggregation Time = 07:00
5. SSL aggregation Time = 07:05

Connection records

1st time difference

20 min

2nd time difference

0 min

20 min

0 min

20 min

15 min

5 min
Example Feature: Mean of certificate validity during capture

ssl-connect-unit

1. SSL aggregation
2. SSL aggregation
N. SSL aggregation

Ratio of validity during the capture

\[\frac{r}{d} \]

Mean of Certificate validity during the capture

\[\frac{r}{d} \]

01.01.2010
01.01.2015
01.01.2020
Table with final data to use in our Algorithms

<table>
<thead>
<tr>
<th>ssl-connect-unit</th>
<th>40 features</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ 10.0.2.15, 54.201.174.90, 443, tcp }</td>
<td>f1 f2 f3 ... f40</td>
<td>Normal</td>
</tr>
<tr>
<td>{ 10.0.2.109, 173.194.122.30, 443, tcp }</td>
<td>f1 f2 f3 ... f40</td>
<td>Malware</td>
</tr>
</tbody>
</table>

...
Machine learning algorithms

- XGBoost
- Random Forest
- SVM
Experiments

- **XGBoost**
 - Cross validation accuracy: 92.45%
 - **Testing accuracy:** 94.33%
 - False Positive Rate: 5.54%
 - False negative rate: 10.11%
 - Sensitivity: 89.89%
 - F1 Score: 46.96%

- **Random Forest**
 - Cross validation accuracy: 91.21%
 - **Testing accuracy:** 95.65%
 - False Positive Rate: 4.05%
 - False negative rate: 14.82%
 - Sensitivity: 85.18%
 - F1 Score: 52.24%
Top 7 most discriminant features

1. Certificate length of validity
2. Inbound and outbound packets
3. Validity of certificate during the capture
4. Duration
5. Number of domains in certificate (SAN DNS)
6. SSL/TLS version
7. Periodicity
Malware and Certificates

- Certificates used by Malware in Alexa 1000 ~ 50%
- Certificates used by Normal in Alexa 1000 ~ 30%

The certificates used by Malware are mostly from normal sites!
Conclusions

● Future Work
 ○ Deep learning with own architecture
 ○ More features
 ○ More experiments
 ○ Unsupervised learning
 ○ Anomaly detection
Should I click?

www.shouldiclick.org
Should I click or not?

www.shouldiclick.org tells you if you should click or not in a link due to security concerns. We used security-based machine learning research to find if all the information and content of a webpage is safe to click. The output of this service is a recommendation for you whether you should click on this link or not. You should have received this link with the intention of clicking on it.

Examples:

Scan
How does it work?

- www.urlscan.io
How does it work?

- www.urlscan.io
- Html and css sources
How does it work?

- www.urlscan.io
- Html and css sources
- Text content of html
- DGA
Thanks for attention!

František Střasák
strasfra@fel.cvut.cz
@FrenkyStrasak

Sebastian Garcia
sebastian.garcia@agents.fel.cvut.cz
@eldracote