Securing **Web Applications**...
...at the **Network Layer**

OWASP Spain Chapter Meeting
16th June, 2006 – Barcelona (ES)

Carlos Fragoso Mariscal
Chief Technical Director

carlos@jessland.net

Goals

- Consider network security as a defense-in-depth approach for web application security
- Learn how security architecture could provide a robust topology to enforce security in web services environments
- Have fun with our case-based scenario
1st OWASP Spain Chapter Meeting

Agenda

- Web Applications
- Security Architecture
- Case Study
- Conclusions
- References
Web Applications’ Interface

- Web application clients mainly use HTTP protocol as their interface to the application
- Users (B2C) and hosts (B2B) reside on external or business partners networks

Web Application’s layered model

- Some web applications are not able to separate interface and application layers so they are just one
- Data layer is commonly a filesystem or a database
First operational and security approach is to separate the EVERY layers on DIFFERENT hosts.

- Web Applications
- Security Architecture
- Case Study
- Conclusions
- References
Design Parameters

- Defense-in-depth
- Technology balance
- Least privilege principle
- Simplicity
- Biodiversity
- Access control
- Operational/Risk balance
- Escalability
- Redundancy

What does Perimeter mean?
Security Areas

- Internet
- Extranets
 - Business partner or remote sites
- DMZ’s
 - External
 - Internal
- Intranets
 - Users network
 - Protected network

Devices

- Firewalls
- Routers
- Switches
- Intrusion Detection/Prevention Systems
- Honeypots and Honeynets
- Security Event Managers
- Servers
- Desktop and mobile end-user systems
- Wireless Access Points
- Hybrids
Network Design step-by-step

- Security policy
- Security levels classification
- Deploy network devices
- Segmentation with firewalls
- Deploy additional security devices
 - IDS/IPS
 - Content inspection
 - VPNs

Network Firewalls

- Interconnects different security level networks providing traffic access control
- Technology:
 - Stateless: each packet handled individually
 - Stateful: keeps state of network flows
 - Stateful Inspection: understand application layer protocols
- Value-added features:
 - Load balancing, failover, address translation, VPNs, packet normalization, content inspection, etc.
- Ruleset:
 - Firewall lockdown
 - No logging
 - Log denied
 - Sneaky rule
Network Intrusion/Prevention Systems

- Their job is to provide network audit features and intrusion detection/prevention over the network
- Types: network, node (IDS) and in-line (IDS, IPS)
- Traffic capture: taps, hubs, span ports, balancing...
- Advantages:
 - Easy to deploy
 - Effective
 - Good scalability
- Disadvantages
 - False positives
 - False negatives
 - Non-textual alarms
 - High-volume of data
 - Ciphered traffic
- An IPS is not a firewall!!!
Securing Web Applications at the Network Layer

1st OWASP Spain Chapter Meeting

Tips’n’hints 😊

- Critical information must be placed FAR AWAY from possible risky areas
- Network security does NOT patch your hosts for you!
- Some critical services have a low rate of possible vulnerabilities because they have been heavily tested
- Sometimes information must be replicated to give a limited-scope view
Prevention

Detection

Reaction!

Agenda

- Web Applications
- Security Architecture
- Case Study
- Conclusions
- References
Security Architecture Case Study

Hackobo vs Armando

- Corporate network grew **WITHOUT a security-minded approach**
- **Several security INCIDENTS** lead to a security architecture redesign
- Let’s help Armando about how to face common issues on his way to a new architecture deployment
Workstation users manage servers and have Internet access.

- External users **access external servers**
- Some external servers (web, app, dns, smtp) **need to access internal server**
- Workstation users manage servers and have Internet access

Identifying security areas

- Internal server contains corporate **“JEWELS OF THE CROWN”**
- Workstation users manage corporate infrastructure
- External servers provide services to the outside
- Internet is a public, least-secure, network
1. **Reconnaissance** and **exploit launch** to compromise external web server
2. **Internal reconnaissance** attack trying to **compromise** internal workstations or servers
Step 1: DMZ deployment

- Sharing the DMZ between critical services (dns, smtp) and the web server

1. Reconnaissance and exploit launch to compromise Armando’s external web server
2. Firewall allows web server to download hacking tools
3. Local layer-3 compromise or DoS attack against DNS and SMTP external servers
Step 2: VLAN-based DMZ deployment

- Logical isolation (VLAN) on the same physical switch could encourage the hacker to perform L2 DoS or VLAN hopping attacks
- Same software vendor could ease multilayer compromise

a) Compromise webserver and perform layer-2 vlan hopping in order to try to breach the other servers
b) Launch exploit against smtp or dns server and relaunch it again to get internal access (nicer if possible)
Step 3: Dual public DMZ

- Vulnerability over the single firewall could allow direct communication to intranet
- Malware injection could compromise workstations

Step 3: Dual public DMZ

- Specially crafted packets are sent so that filtering is overcomed and sent directly to internal server
- Malware is injected through a URL (malware site) on fake email
Step 4: Multilayered service-leg-based double DMZ

- Vulnerabilities such as SQL Injection on AppServer or Internal Server database could compromise the boxes and probably disclose sensitive information.

1. Reconnaissance against web/app server to identify database internal server
2. Perform SQL Injection in order to get sensitive data back to the hacker
Step 5: Protected Network with Data Replication

- Database replication of necessary data

Remarkable Security Issues

- Lack of multilayer firewalls
- Sharing of different network security areas
- Outbound traffic control on DMZ areas
- “Relaxed” server patching policy
- Shared resource used for critical information
- Logical vs physical isolation
- OS, Software and hardware biodiversity
- Sensitive data access
Long life to Armando’s network

Before

Bad old days

After

Impressive

Agenda

- Web Applications
- Security Architecture
- Case Study
- Conclusions
- References
Conclusion

- Security architecture definitively helps to improve the global state of security for web services
- It is highly recommended to separate interface, application and data layers
- Knowing your environment is half-the-battle in order to choose a good topology approach
- Place hosts according to their data security level, sometimes splitting or replicating the information is necessary
- What has been described makes thing MORE difficult to the hacker but NOT impossible! 😊

Agenda

- Web Applications
- Security Architecture
- Case Study
- Conclusions
- References
References

- "Inside Network Perimeter Security", S.Northcutt
 ISBN: 0735712328
- "The Tao of Network Security Monitoring", R.Beijlitch
 ISBN: 0321246772
- "Jessland Information Security Knowledgebase (JISK)"
 URL: http://www.jessland.net/JISK.php
- "Protecting your IP network infrastructure", Securite.og
 URL: http://www.securite.org/presentations/secip/
- "Network Intrusion Detection", S.Northcutt & Judy Novak
 ISBN: 0735710082
- "Warriors of the Net"
 URL: http://www.warriorsofthenet.com

Take care of your perimeter !!!

carlos@jessland.net
More information at: http://www.jessland.net
Thank you !!!

http://carlos.fragoso.es carlos@fragoso.es