N

23

X

David Rook E
The Principles of Secure Development
__,/

OWASRP Ireland Conference, Dubﬁ?
e

Friday, 18 September 2009



if (slide == introduction)
System.out.printin("I’m David Rook");

2

« Security Analyst, Realex Payments, Ireland
CISSP, CISA, GCIH and many other acronyms

« Security Ninja (www.securityninja.co.uk)

* Speaker at security events (national and international)
* lIA Web Development Working Group

« Facebook hacker and published security author (insecure

magazine, bloginfosec etc) Q{% “7%’
f-\?d\\

The real time payment exchange

Friday, 18 September 2009


http://www.securityninja.co.uk
http://www.securityninja.co.uk

@ Agenda

e |tis broken so lets fix it

The current approach

The Principles of Secure Development

An example of a real world implementation

The real time payment exchange

Friday, 18 September 2009



@ It is broken so lets fix it

* Cross Site Scripting, 10 years old?
« SQL Injection, 11 years old?

33% of all vulnerabilities in 2008 and 2009 (so far) are
XSS or SQL Injection (Based on CVE numbers)

v
S~ 777
f“?\—/\

CVE statistics: http://web.nvd.nist.gov/view/vuln/statistics The real time payment exchange

Friday, 18 September 2009




@ It is broken so lets fix it

CVE's
B Total
B sali

XSS

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009



It is broken so lets fix it

7000
6000
CVE's
5000
B Total
B sali
4000 XSS
3000
2000
v
1000 e
o i} I—lll—.._ i real
2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 The real time payment exchange

Friday, 18 September 2009



It is broken so lets fix it

7000 SQLi & XSS = 32.24%
6000
CVE's

5000

B Total

B sali
4000 . XSS
3000

2000

1000

0

i I I | | =
s
1 I ]

2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 To rea me payment cxchange




@ Philosophical Application Security

Give a man a fish and you feed him for a day, teach
him to fish and you feed him for a lifetime.

The real time payment exchange
Friday, 18 September 2009



@ Philosophical Application Security

Give a man a fish and you feed him for a day, teach
him to fish and you feed him for a lifetime.

| want to apply this to secure application development:

Teach a developer about a vulnerability and he will
prevent it, teach him how to develop securely and
he will prevent many vulnerabilities.

The real time payment exchange
Friday, 18 September 2009



The current approach
(And why | think it fails to deliver secure applications)

2

 The cart before the horse

Security guys tell developers about specific vulnerabilities

We hope they figure out how to prevent them

Inevitably security flaws end up in live code

Security guys complain when data gets stolen

7/
S~ 777
=2

The real time payment exchange

Friday, 18 September 2009




The current approach
(And why | think it fails to deliver secure applications)

Z

* What if we taught drivers in the same way?

Instructor tells driver about the different ways to crash

We hope the driver figures out how not to crash

Inevitably the driver will crash

People complain when they get crashed into

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The current approach

(And why | think it fails to deliver secure applications)

* Many lists of vulnerabilities

OWASP Top 10

White Hat Sec Top 10
SANS Top 25
Others??

« |= Secure development guidance

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009



The current approach
(And why | think it fails to deliver secure applications)

2

* Many lists of vulnerabilities

OWASP Top 10

White Hat Sec Top 10
SANS Top 25
Others??

« |= Secure development guidance

* 45 vulnerabilities, 42 unique names gg?f

- 8 secure coding principles to prevent them [

eal time payment exchange

Friday, 18 September 2009




@ What we need to do

« Put the application security horse before the cart

« Security guys tell developers how to write secure code

* Developer doesn’t need to guess anymore
« Common vulnerabilities prevented in applications
« Realistic or just a caffeine fueled dream?

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009



4
@ Lets make secure development easier

« Keep It Short and Simple (KISS)

* The principles must be clearly defined

« Language/Platform/Framework independent
« Should cover more than just the common vulnerabilities
* More secure software and greater ROI on security training?

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

Input Validation

Output Validation

Error Handling

Authentication and Authorisation
Session Management

Secure Communications

Secure Storage

Secure Resource Access real

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* |Input Validation

 |dentify and define the data your application must accept

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* |Input Validation

 |dentify and define the data your application must accept

« Create regex’s to validate each data type (content and size)
« For example, a credit card number data type: \d{12,16}$

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* |Input Validation

 |dentify and define the data your application must accept

« Create regex’s to validate each data type (content and size)
« For example, a credit card number data type: \d{12,16}$
« Use whitelisting for validation where possible

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* |Input Validation

 |dentify and define the data your application must accept

« Create regex’s to validate each data type (content and size)
« For example, a credit card number data type: \d{12,16}$
« Use whitelisting for validation where possible

« Blacklisting approach harder and potentially less secure
« Blacklist example, replacing single quotes:

s.replaceAll(Pattern.quote(" ' "), -
Matcher.quoteReplacement(" " ")) S 77
=<2

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* Output Validation

 |dentify and define the data your application must output

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* Output Validation

 |dentify and define the data your application must output

« Understand where (i.e. in a URL) your data should end up
« Choose the correct output encoding for the data's destination

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* Output Validation

 |dentify and define the data your application must output

« Understand where (i.e. in a URL) your data should end up
« Choose the correct output encoding for the data's destination
* Proper encoding means this attack:

www.examplesite.com/home.html?day=<script>alert(document.cookie)</script>

Becomes:

day=%3Cscript%3Ealert%28document.cookie%29%3C/script%3E < ,
7T

The real time payment exchange

Friday, 18 September 2009



http://www.examplesite.com/home.html?day=
http://www.examplesite.com/home.html?day=

@ The Principles of Secure Development

* Error Handling

 Even the best apps will crash at some point, be prepared!

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* Error Handling

 Even the best apps will crash at some point, be prepared!

« Crashes/errors can help an attacker if you don’t handle them

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* Error Handling
 Even the best apps will crash at some point, be prepared!

« Crashes/errors can help an attacker if you don’t handle them
« Handle error conditions securely, sanitise the message sent

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

* Error Handling

Even the best apps will crash at some point, be prepared!

Crashes/errors can help an attacker if you don’t handle them
Handle error conditions securely, sanitise the message sent
No error handling = information leakage

Microsoft OLE DB Provider for ODBC

Drivers (0x80040E14)

[Microsoft] [ODBC SQL Server Driver]

[SOL Server]Invalid column name <;5%7
o2

/examplesite/login.asp, line 10

The real time payment exchange

Friday, 18 September 2009



@ The Principles of Secure Development

 Authentication and Authorisation

« Even simple apps often have a need to authenticate users

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

 Authentication and Authorisation

« Even simple apps often have a need to authenticate users

 Often at least two levels of authorisation

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

 Authentication and Authorisation

« Even simple apps often have a need to authenticate users

« Often at least two levels of authorisation
* Need to prevent horizontal and vertical privilege escalation

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

 Authentication and Authorisation

« Even simple apps often have a need to authenticate users

« Often at least two levels of authorisation
* Need to prevent horizontal and vertical privilege escalation
* Implement strong passwords and management systems

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

 Authentication and Authorisation

« Even simple apps often have a need to authenticate users

« Often at least two levels of authorisation
* Need to prevent horizontal and vertical privilege escalation
* Implement strong passwords and management systems

« Ensure A+A s secure, not a false sense of security (CAPTCHA?)

7/
S~ 777
=2

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

 Authentication and Authorisation

« Even simple apps often have a need to authenticate users

« Often at least two levels of authorisation
* Need to prevent horizontal and vertical privilege escalation
* Implement strong passwords and management systems

« Ensure A+A s secure, not a false sense of security (CAPTCHA?)
« Don't rely on fields that are easily spoofed (referrer field)

7/
S~ 777
=2

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

« Session Management

 Used to manage authenticated users, no need to re-auth

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

« Session Management

 Used to manage authenticated users, no need to re-auth

* You need to ensure that your sessionlD’s have sufficient entropy

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

« Session Management

 Used to manage authenticated users, no need to re-auth

* You need to ensure that your sessionlD’s have sufficient entropy
« SessionlD’s must not be predictable or reusable

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

« Session Management

Used to manage authenticated users, no need to re-auth

You need to ensure that your sessionlD’s have sufficient entropy

SessionlD’s must not be predictable or reusable

Never build your own session management, it will fail

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

« Session Management

Used to manage authenticated users, no need to re-auth

You need to ensure that your sessionlD’s have sufficient entropy
SessionlD’s must not be predictable or reusable
Never build your own session management, it will fail

Protect sessionlD’s when in transit (i.e. SSL!)

v
S~ 777
S

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

« Session Management

Used to manage authenticated users, no need to re-auth

* You need to ensure that your sessionlD’s have sufficient entropy
« SessionlD’s must not be predictable or reusable

* Never build your own session management, it will fail

* Protect sessionlD’s when in transit (i.e. SSL!)

* |ssue a new value for sensitive actions (i.e. funds transfer)

v
S~ 777
S

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Communications

* Protect data (i.e. CC no, passwords, sessionlD’s) in transit

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Communications

* Protect data (i.e. CC no, passwords, sessionlD’s) in transit

« As with all crypto, don’t create your own

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Communications

* Protect data (i.e. CC no, passwords, sessionlD’s) in transit

« As with all crypto, don’t create your own
« Don’t use broken protection mechanisms (i.e. SSLv2)

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Communications

Protect data (i.e. CC no, passwords, sessionlD’s) in transit

As with all crypto, don't create your own

Don’t use broken protection mechanisms (i.e. SSLv2)

Don’t just use SSL/TLS for logon pages, protect the session!

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Communications

Protect data (i.e. CC no, passwords, sessionlD’s) in transit

As with all crypto, don't create your own

Don’t use broken protection mechanisms (i.e. SSLv2)

Don’t just use SSL/TLS for logon pages, protect the session!

Try to avoid mixing secure and insecure traffic on a page

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Storage

* Protect data (i.e. CC no, passwords, sessionlD’s) when stored

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Storage

* Protect data (i.e. CC no, passwords, sessionlD’s) when stored

« As with all crypto, don’t create your own

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Storage

* Protect data (i.e. CC no, passwords, sessionlD’s) when stored

« As with all crypto, don’t create your own
« Don’t use broken protection mechanisms (i.e. DES)

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Storage

Protect data (i.e. CC no, passwords, sessionlD’s) when stored

As with all crypto, don't create your own

Don’t use broken protection mechanisms (i.e. DES)

Don’t store data in places where you can’t confidently secure it

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

e Secure Storage

Protect data (i.e. CC no, passwords, sessionlD’s) when stored

As with all crypto, don't create your own

Don’t use broken protection mechanisms (i.e. DES)

Don’t store data in places where you can’t confidently secure it

Strong protection mechanisms, how strong should it be?

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




File Edit Tools Syntax Buffers Window Python Help

- e $EDh B BES XO2 @8

3 var valid codes = new Array(); 4|
valid_cocee[O] = 'b50339310e1de285ac99d4c3990b8693: 357" ;
alid codes[1] = '3164d90f7e8107290b44c423e735f264: 360" ;
alid codes[2] = '3907192d4edc7dcSf2a858ea07097¢c62: 361" ;
alid codes[3] = '689f1db934%ec76ef0c295b5e23dcdla: 362" ;

valid codes[4] = '17e7245eced7cbSb541511c4baasShb14:363" ;
' ' 85c0039ec9dd90329aa27167fcdac488: 364" ;
valid codes = 'f65d7bcfd3a814ebdScc3b48127a72¢cf : 365" ;
valid codes[7] = '7d4b18a3fcdddelcd4edcdd0o668ffoes:366' ;

L Q
pua— ) p—
ol
D @
) W
™~ ™
(o))
| N S
|

alid codes[8] = 'ale768492d70531e22405e44f64d4ffb:367';
valid codes[9] = 'db6f9c051d7f8c4641cel66208239051: 368" ;
valid codes[10] = 'f4adb34cf660ac92128868854c879fdc: 369" ;
valid_codes[11] = 'aflla2712baacSel1274d9a83d864b334:370' ;
alid codes[12] = 'dbd3fd41b442624ebcfeeSldaaddedst: 371" ;
alid codes[13] = 'lafea6b23b96e2dae9edec937cfalbag8:372";
alid codes[14] = '22c83facdbc2819d7cf7109ea220e00a: 373" ;
alid codes[15] = 'cedb27a32419af3f1cd2d235c8047077:374" ;
alid codes[16] = '4aa592f7db9eSce0d21251839f 28d647:375"' ;
alid codes[17] = '24e47daSddc94d38441a3ac8falefosd: 376 ;
alid codes[18] = '63df7661fba67b75f9fd052c8a2b6d08: 377" ;

Dalid_cocee[lQ] = '0a927cc69f8273beOccacdblb9abecb7:378' ;

alid codes[20] = '8e9866383fe99765c23a6952bf580548: 379" ;
alid codes[21] = '2ab87df7a6deb657a8b1211a2545f8fc:380" ;
valid codes[22] = 'baSaf4260c9d64d9cfdd48ac3366119e:381" ;
valid codes[23] = '858e8999193647650191c9cffbaa36ae:382" ;
valid_codes[24] = '32dob92d11ac680fb3a3035d627161fc:383" ;
valid codes[25] = '447842e7b999367b64d31c6b927chb587:384" ; ~.
valid codes[26] = 'e7e0092245f990alc44621027146d0c8: 385" ;
alid codes[27] = '1785a5f480defa0075c21965ab472b95:386' ;

1601, 1 60%

T T T e =

Friday, 18 September 2009 |

t exchange




@ The Principles of Secure Development

« Secure Resource Access

« Obscurity != security, don’t try to hide sensitive resources

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

« Secure Resource Access

« Obscurity != security, don’t try to hide sensitive resources

« Understand the users flow through an app, cover weak spots

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The Principles of Secure Development

« Secure Resource Access

« Obscurity != security, don’t try to hide sensitive resources

« Understand the users flow through an app, cover weak spots
« T-Mobile didn’'t do the above, Paris Hiltons account hacked

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ Lets redefine what secure development means

* Follow a small, repeatable set of principles

Try not to focus on specific vulnerabilities
* Develop securely, not to prevent "hot vuln of the day"”

 Build security into the code, don't try to bolt it on at
the end

change
Friday, 18 September 2009



4
@ Evolution, not revolution

* Don’t make things more difficult than they need to be

« This isn’t a new wheel, its just a smoother, easier to use wheel

« Don't treat security as something separate, integrate it
« By integrating security fully a security bug is just another bug
« Secure development doesn’t have to be hard, KISS it!

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The new approach is working

 Private banking development company, Switzerland

» Application Security lead saw the secure development principles

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ The new approach is working

 Private banking development company, Switzerland

» Application Security lead saw the secure development principles
» Re-designed secure development training for his company

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The new approach is working

 Private banking development company, Switzerland

» Application Security lead saw the secure development principles

» Re-designed secure development training for his company
« Security training costs down, quicker "spin up" of developers

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The new approach is working

 Private banking development company, Switzerland

» Application Security lead saw the secure development principles
» Re-designed secure development training for his company

« Security training costs down, quicker "spin up" of developers
« Security within their SDLC now based on the principles

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ The new approach is working

 Private banking development company, Switzerland

» Application Security lead saw the secure development principles
» Re-designed secure development training for his company

« Security training costs down, quicker "spin up" of developers

« Security within their SDLC now based on the principles

In his own words:

You released the "secure development principles" at a time | had issues with

my dev teams in how to teach them secure development. Your approach
convinced me to look in another direction, not trying to teach every
vulnerability but finding the basic principles that help prevent their Q [
existence. At that time, this was genius for me: most of my training since »;jz

has been inspired by your secure development principles. real

The real time payment exchange

Friday, 18 September 2009



The new approach is working

They modified the principles matrix to match their own terminology

Specific vulnerabilities for each principle

OWASP

| WhiteHatSec

Sans

Principles

Input Validation

Cross Site Scripting, Injection Flaws, Malicious File
Execution

Cross Site Scripting, SQL Injection, Content
Spoofing*

Improper Input Validation, Failure to Preserve
SQL Query Structure, Failure to Preserve Web
Page Structure, Failure to Preserve OS
Command Structure, Failure to Constrain
Operations within the Bounds of a Memory
Buffer, Failure to Control Generation of
Code**, Client-Side Enforcement of Server
Side Security**

Output Validation

Cross Site Scripting

Cross Site Scripting

Improper Encoding or Escaping of Output,
Failure to Preserve Web Page Structure

Error Handling

Information Leakage and Improper Error Handling

Information Leakage

Error Message Information Leak

Authentication and
Authorisation

Broken Authentication and Session Management

Insufficient Authorisation, Insufficient
Authentication, Abuse of Functionality

Improper Access Control, Hard-Coded
Password, Insecure Permission Assignment for
Critical Resource, Execution with Unnecessary
Privileges

Session Management

Broken Authentication and Session Management,
Cross Site Request Forgery

Cross Site Request Forgery

Cross Site Request Forgery, Use of
Insufficiently Random Values**

Secure
Communications

Insecure Communications

Use of a Broken or Risky Cryptographic
Algorithm, Cleartext Transmission of Sensitive
Information, Use of Insufficiently Random
Values**

Secure Resource
Access

Insecure Direct Object Reference, Failure to Restrict
URL Access

Predictable Resource Location

External Control of File Name or Path,
Untrusted Search Path

Secure Storage

Insecure Cryptographic Storage,

Use of a Broken or Risky Cryptographic
Algorithm, Cleartext Transmission of Sensitive
Information, External Control of Critical State
Data**

* - based on description from WhiteHatSec
** - based on description from Sans/CWE

Code Security Flaw Matrix version 2.0
April 2009
David Rook

www,securityninja.co.uk

Friday, 18 September 2009




Development principle Clues OWASP WhiteHatSec

SANS Top 25

1. Input validation Know your entry points Injection flaws, Malicious file Content spoofing, SQL Inject

Validate all input executior HTTP Response splitting
Validate at the server-side
Whitelist is EXCELLENT
Regex is GOOD
Blacklist Is WEAK
2. Output encoding -~ Webapps: encode for HTML, javascript, XML Cross-site scripting Cross-site scripting

Encode all exit points (system, OS, emall, T24, third-party, PDF, office, etc.)

3. Secure failure Information leakage and improper Information leakage

error handling

Never display error messages, generate ticket instead and log error
Use fail-safe logic (if/else-> default is secure)

Open design: a hacker should read our specs without danger
Require authori treference,

4. Authentication and authorization on even if the "URL' is known

hardening

Insecure direct obje

nsufficient authentication,

Authorize at U » discretely at business layer Broken auth, Management,

another "I’ is used? Failure to restrict URL access Insufficient authorization
Password recovery: authenticate before starting procedure
NO CUSTOM authentication/authorization managers!!!!
Authenticate users AND data (ACLs and configuration file integri
Don't confuse identification (“saying who she Is") and authentication
(*proving who she is™)
NO CUSTOM session mana
Session lifetime
ssue new |0s
Protect on
Cookies: Secure + httponly
Use anti-automation mechanisms.
ate is OKAY for non-sensitive
captcha for sensitive
token for critica

5. Sesslon hardening Cross-site request forgery, Broken Session fixation, Cross-site

session management request forgery

hen appropriate (sensitive ops)
ore

w

6. Secrecy of sleeping and traveling .~ use the standard AP (no calls to system.security.cryptography) for hashing Insecure cryptographic storage,
data and encryption mecure communications

don't send credentials, prove you know them

don't send keys (use key exch.)

protect keys by master key and don't store MK

protect in-memory acc (securestrings + DPAPI)

f hitps, don't allow http -> kill session if detected

check with SO when encryption is used

HO did WHAT from WHERE and WHEN)

7. Traceability Abuse of functionality

8. Economy of mechanisms and

-~ Trace all business cases (
.- Only allocate when needed

resources beware of session state size
beware of serialization cascades
deallocate resources ASAP
beware of DB pooling
COVERAGE: 100%

on,

Predictable resource location,

100%

Improper input validation, Failure to preserve SQL structure, Failure to
preserve OS5 command structure, Failure to constrain operations within the
v buffer, External control of critical state data, Untrusted

bounds of a me
search path, £
generation of code, Download of code without integrity check, Incorrect
calculation, Client-side enforcement of server-side security

Improper escaping or encoding of cutput, Failure to preserve web page
structure

al control of file name and path, Failure to control

err

Error message information leak

Improper access control, Execution v

) unnecessary privileges, Insecure
permission assignment for critical resources

Cross-site request forgery

Cleartext transmission of sensitive information, Use of broken or

cryptographic algorithm, Hard-coded pas
values

risky

ord, Use of insufficiently random

Improper resource shutdown or release, Improper initialization

96%

Uncovered vulnerabilities: Directory indexing (config.)

Race conditions

Friday, 18 September 2009




@ Security Ninja new site launch!

« Security Ninja, brought you by Realex Payments

* Free application security and compliance resource site

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ Security Ninja new site launch!

« Security Ninja, brought you by Realex Payments

* Free application security and compliance resource site

* Blog and site managed and updated by myself

v
S~ 777
f—7\-ﬂ\

The real time payment exchange

Friday, 18 September 2009




@ Security Ninja new site launch!

« Security Ninja, brought you by Realex Payments

* Free application security and compliance resource site

* Blog and site managed and updated by myself
« Security presentations, whitepapers, videos and audio online

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009




@ Security Ninja new site launch!

« Security Ninja, brought you by Realex Payments

* Free application security and compliance resource site

« Blog and site managed and updated by myself
« Security presentations, whitepapers, videos and audio online

« Secure Development Principles whitepaper available here today

v
S~ 777
f“?\—/\

The real time payment exchange

Friday, 18 September 2009



o
o

www.securityninja.co.uk
Twitter: @securityninja

@\\\\\\ LU %)

Friday, 18 September 2009


http://www.securityninja.co.uk
http://www.securityninja.co.uk

QUESTIONS?

www.securityninja.co.uk
Twitter: @securityninja

Friday, 18 September 2009


http://www.securityninja.co.uk
http://www.securityninja.co.uk

