CLASP, SDL and Touchpoints compared

Bart De Win
DistriNet, Dept. of Computer science
K.U.Leuven
bart.dewin@cs.kuleuven.be

OWASP Day
Belgium
6 Sep 2007

Copyright © 2007 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons Attribution-ShareAlike 2.5 License. To view this license, visit http://creativecommons.org/licenses/by-sa/2.5/

The OWASP Foundation
http://www.owasp.org/
Agenda

- Introduction
- Phase-wise comparison
- Discussion
Introduction

- Processes for secure software development have become available
 - CLASP, SDL, Touchpoints, Correctness by Construction, ...
 - Shown to considerably improve the security level of software in practice

- It is not so easy to pick the most suited one
 - How do they compare?
 - What are their strong and weaker points?
 - Can they be combined?
 - Is there room for improvement?

- Highlights of a theoretical comparison of three candidates: CLASP, SDL and Touchpoints
 - Difficult and time-consuming job
 - Activity-wise analysis

- Joint work with Riccardo Scandariato, Koen Buyens, Johan Grégoire and Wouter Joosen
Common Lightweight Application Security Process (CLASP)

- Originally defined by Secure Software, later donated to OWASP
- Key players: Pravir Chandra (project lead), John Viega
- Most recent version: 1.2, version 2007 is announced
- Core is a set of 24 activities

General characteristics
 - Security at center stage
 - Loose structure
 - Role-based
 - Rich in resources
Secure Development Lifecycle (SDL)

- Result of Microsoft’s commitment to trustworthy computing (from 2002 onwards)
- The core process is organized in 12 stages

General characteristics

- Security as a supporting quality
- Well-defined process
- Good guidance
- Management perspective
Touchpoints (TP)

- Set of best practices, grouped into 7 touchpoints.

General characteristics

- Risk management
- Black-hat versus white-hat
- Prioritization of touchpoints (quick wins)
- Resource and knowledge management
How to compare in more detail?

Problem:
- Different setup
- Different activities

Our approach
- Identify activities
- Optimize hierarchy
- Link similar activities
- Organize into phases (5+1)
- Result: activity matrix

Used as a vehicle for evaluation and comparison
Education and awareness

- Common baseline
 - Basic and specific education
 - Increase the awareness of the problem and the specific environment

- Differentiators
 - For CLASP, education is basis for accountability
 - In SDL, attention is given to track attendance and measure effectiveness of courses
 - Briefly mentioned in Touchpoints
Project inception

- Common baseline
 - Installation of the security team
 - Identification of security metrics
 - Logistics and tools

- Differentiators
 - Extent of the security team
 - SDL explicitly sets the “bug bar”
 - CLASP identifies the global organizational policy (an important source for requirements)

- Discussion
 - CLASP is the most thorough in discussing metrics, but still much room for improvement
 - Upfront determination of security goals?
Analysis

- Common baseline
 - Threat modeling and requirements specification

- Differentiators
 - See figure

- Discussion
 - Combination of CLASP and TP might benefit analysis-level threat modeling
 - CLASP: attack-driven, resource-driven, UC-driven
 - TP: actor * anti-requirement * attack model => MUC
 - Threat modeling for conceptual resources (assets)?
 - How to deal with the threat explosion problem
Design

- Common baseline
 - Attack surface scrubbing (not in TP)
 - Product risk assessment
 - Architectural threat analysis

- Differentiators
 - Only CLASP focuses on constructive design
 - Annotate class design, security principles in design
 - Microsoft’s STRIDE provides thorough and systematic threat modeling

- Discussion
 - Little support for architectural design
Implementation and Testing

■ Common baseline
 ▶ Secure coding guidelines (not in TP)
 ▶ Security analysis & code review
 ▶ Security testing
 ▶ Addressing security issues (not in TP)

■ Differentiators
 ▶ CLASP: includes implementation activities
 ▶ SDL: creation of tools for configuration and audit
 ▶ Security testing: black-hat versus white-hat, unit versus system, black-box versus white-box, ...

■ Discussion
 ▶ Test generation and automation
 ▶ Difficulty of determining test coverage (esp. black-hat)
Deployment and support

- Common baseline
 - Documentation and security guides
 - Response planning and execution

- Differentiators
 - Code sign-off (SDL) & code signing (CLASP)
 - SDL: elaborate response planning and execution

- Discussion
 - Focus on support rather than deployment
Synthesis and discussion

The three processes are similar and they can be mapped to each other

- CLASP has the widest scope. When fully (and properly) applied, it is probably the heaviest candidate (despite being named lightweight)
- SDL is more focused and, hence, it often provides the most concrete activities
- Touchpoints is well suited from an audit perspective. It has interesting ideas, but is often too descriptive.

The main goal of a process should be to increase systematicity, predictability and coverage.

Advise: start with the one that suits your goal best and augment where necessary with elements from the others.
Possible improvements

Activities:
- Method: not what to do, but how to do it
- Systematic (no 100% security, but know what you’re doing)
- Description: input - method - output + resources
- Good mix of construction - verification - management

Integration of activities
- Output Act.1 -> input Act.2 for all constructive activities

Security metrics to measure progress
- Activity-wise and process-wise

Integrated support for security principles

Security patterns are relevant at all levels
- Vulnerabilities, requirements, design, testing, ...

Further experience!
Questions ?
Requirements Elicitation

<table>
<thead>
<tr>
<th>Class</th>
<th>Resource</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-confidential</td>
<td>Customer Information</td>
<td>1. User-confidential data is only created by the banking company, the banking system or the ATM terminal.</td>
</tr>
<tr>
<td>Banking System Processes</td>
<td>Banking Service</td>
<td>2. Start/Stop/Restart actions are only executed by the Banking System Administrator.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Coverage Verification

<table>
<thead>
<tr>
<th>Class</th>
<th>Resource</th>
<th>Capability</th>
<th>Covered Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-confidential</td>
<td>Customer Information</td>
<td>Add(create)</td>
<td>1</td>
</tr>
<tr>
<td>User-confidential</td>
<td>Transaction Information</td>
<td>Create</td>
<td>1</td>
</tr>
<tr>
<td>User-confidential</td>
<td>Transaction Information</td>
<td>Set Ownership</td>
<td>NO</td>
</tr>
<tr>
<td>User-confidential</td>
<td>Transaction Information</td>
<td>Read Meta-attributes</td>
<td>NO</td>
</tr>
<tr>
<td>Banking System Processes</td>
<td>Banking Service</td>
<td>Start/Stop/Restart</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Elicit Special Requirements

<table>
<thead>
<tr>
<th>Resource</th>
<th>Capability</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Log File</td>
<td>Set Ownership</td>
<td>The ownership of the transaction log file is only set by the security administrator.</td>
</tr>
<tr>
<td>Transaction Log File</td>
<td>Read Meta-attributes (last time database modified)</td>
<td>The meta-attributes of the transaction log file are only read by the bank auditor.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Abuse Cases

Threats (Actors)
- Organized Crime
- Insiders
- Legitimate Users
- ...

Anti-Requirements
- Disclosure of confidential information
- Rendering ATM terminal unavailable
- ...

Attack Patterns
- Argument injection
- Simple script injection
- Session ID, Resource ID, Blind trust
- ...

Organized Crime
- Perform a DOS attack by script injection
- Gain access to ATM by capturing someone’s session ID

Insider
- Capturing transactions by relying on blind trust

Legitimate Users
- Retrieve a list of accounts from ATM by argument injection
- ...

OWASP Day – Belgium – 6 Sep 2007