About Me

Yaniv Simsolo
CISSP
CTO, Palantir Security

• Over 12 years in Information Security
• Information Systems security expert of:
 • Compound and Hybrid systems
 • Cloud solutions
 • Applications
 • Database Security
 • Back-End systems and components
 • Middleware
Agenda

- Intro
- PT – normal
- PT – Advanced
- PT - Extreme
- Summary
Extreme Penetration Testing

Intro
Be Cool

• Hacking is cool
• Hacking highly secure systems is COOOOOLER
Be Cool

• Take a system.
 – The customer will supply you with at least one!
• Break it to kingdom come.
• Enjoy yourself, have fun.
• Learn something new.
• Experience.
• Exercise your greatest muscle!
Penetration Testing

• The art of...
 – Hacking?
 – Reviewing?
 – Using tools & technologies?
 – Observing?
 – Analyzing?

• Penetration Testing is cool!
Normal PT

- Get some access to a system
- Connect
- Get a feel for the system
- Attack!
- Use some tools. Attack!
- Analyze, Revise and recuperate. Attack even harder!
- Get the Bonanza! Attack, attack, attack until you get it!
- Attack some more!
- Report.

Is that the correct process?
PT Process

• Get the OWASP Testing Guide
• It is the Best Practice
• Follow it
 – Meticulously
 – All 224 pages
What is the described test?

browser environments simply displaying an email message containing the image would result in the execution of the request to the web application with the associated browser cookie.

Things may be obfuscated further, by referencing seemingly valid image URLs such as

```html
<img src="https://[attacker]/picture.gif" width="0" height="0">
```

where [attacker] is a site controlled by the attacker, and by utilizing a redirect mechanism on

```
http://[attacker]/picture.gif to http://[thirdparty]/action.
```

Cookies are not the only example involved in this kind of vulnerability. Web applications whose session information is entirely supplied by the browser are vulnerable too. This includes applications relying on HTTP authentication mechanisms alone, since the authentication information is known by the browser and is sent automatically upon each request. This **DOES NOT** include form-based authentication, which occurs just once and generates some form of session-related information (of course, in this case, such information is expressed simply as a cookie and can we fall back to one of the previous cases).

Sample scenario

Let’s suppose that the victim is logged on to a firewall web management application. To log in, a user has to authenticate himself and session information is stored in a cookie.

Let’s suppose the firewall web management application has a function that allows an authenticated user to delete a rule specified by its positional number, or all the rules of the configuration if the user enters ‘‘’ (quite a dangerous feature, but it will make the example more interesting). The delete page is shown next. Let’s suppose that the form – for the sake of simplicity – issues a GET

```
https://www.company.example/fwmgt/delete?rule=*
```

with the effect of deleting all firewall rules (and ending up in a possibly inconvenient situation).

Now, this is not the only possible scenario. The user might have accomplished the same results by manually submitting the URL or by following a link pointing, directly or via a redirection, to the above URL. Or, again, by accessing an HTML page with an embedded img tag pointing to the same URL.

```
https://[target]/fwmgt/delete?rule=*
```

In all of these cases, if the user is currently logged in the firewall management application, the request will succeed and will modify the configuration of the firewall. One can imagine attacks targeting sensitive applications and making automatic auction bids, money transfers, orders, changing the configuration of critical software components, etc.

An interesting thing is that these vulnerabilities may be exercised behind a firewall, i.e., it is sufficient that the link being attacked be reachable by the victim (not directly by the attacker). In particular, this means that the attacker does not need to be physically present at the same geographical location as the target.
Normal PT

- At least – test for OWASP Top 10.
- How do you test A5?
Extreme Penetration Testing

PT - Advanced
Following some Best Practices is:
- Not always feasible
- Not always practical
- Resource consuming

So, use some shortcuts:
- Scan tools
- Hack tools
That Which is Common
That Which is Common

• Tools progress with technology

EXPECT DELAYS
That Which is Common
That Which is Common

Fiddler

soapUI

SQL

APK inspector

Jailbreak 6
Cold Hard Facts

Misconceptions:
• We CAN test THE security
• Our tools CAN scan the ENTIRE scope
• Our protection tools CAN PROTECT us
WAVSEEP

| # | Logo | Vulnerability Scanner | COUNT | GET | POST | COOKIE | HEADER | SESSION | PNAME | XML | XSL | XSLT | JSON | J2EESE | AMF | J2CSE | WSDL | WCF | DBCS | CSS | Script | GMT | JRE | OOBSE | ODDB | OODDB | ODBID | ODRID |
|----|---------|-------------------------------|-------|-----|------|--------|--------|--------|-------|------|------|------|-------|-------|-------|-------|-------|------|-------|------|-------|-------|-------|-------|-------|
| 1 | ![Burr Suite Professional](image) | Burp Suite Professional | 19 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| 2 | ![IBM AppScan](image) | IBM AppScan | 17 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| 3 | ![NTOSpider](image) | NTOSpider | 16 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| 4 | ![WebInspect](image) | WebInspect | 15 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| 5 | ![Netsparker](image) | Netsparker | 9 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| 6 | ![ScanToSecure](image) | ScanToSecure | 9 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| 7 | ![Acunetix WVS](image) | Acunetix WVS | 7 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| 8 | ![Ammonite](image) | Ammonite | 7 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| 9 | ![Sylhunt Dynamic](image) | Sylhunt Dynamic | 7 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| 10 | ![N-Stalker](image) | N-Stalker | 6 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

The tools are not complete.
Advanced Penetration Testing

• Code analysis
 – Will not cover newest technologies
 – Limited strength
 – Static Vs. Dynamic
Advanced Penetration Testing

• Memory analysis, disk analysis
 – Resource intensive
 – Pinpointed approach only

Software Security Analysis without Code Schematics

Software Security Analysis without a control and data flow diagram of logic and design, is like home security analysis without schematics, such as a flooring plan or circuitry diagram.

Simply scanning for known exploits without verifying control flow integrity is comparable to the same security expert explaining the obvious, such as windows are open and doors are unlocked, and being completely oblivious to the fact that there is a trap door in your basement.

Those known exploits, just like the insecure doors and windows, are only the low hanging fruit.

- McCabe Software
A 256 AES strong key implementation

- $16 \times 8 = 256$?
import com. im. util. Log;
import com. im. util. ValidationUtil;
/**
 * This is a singleton class which handles all the encryption-decryption along with key-randomIV generation.
 * @author
 * *
 */
public class AESEncryptionUtil {

 private final String TAG = AESEncryptionUtil.class.getSimpleDateFormat();
 private static AESEncryptionUtil mInstance = new AESEncryptionUtil();

 // private HashMap<String, String[]> mKeyMapping = new HashMap<String, String[]>();

 private final String TAG_GENERATE_KEY = "key";

 //removed code for clear image

 } */
 /**
 * Handles the generation and caching of key and randomIV.
 * @return
 */
 public String[] getEncryptionKeyRandomIV(){
 BzLog.dumpLog(Log.INFO, TAG, "getEncryptionKeyRandomIV called.");
 String[] keyRandom = new String[]{2};
 try {
 keyRandom[0] = CryptLib.SHA256(TAG_GENERATE_KEY, 32);
 keyRandom[1] = CryptLib.generateRandomIV(16);
 } catch (NoSuchAlgorithmException e) {
 // TODO Auto-generated catch block
 BzLog.dumpLog(Log.INFO, TAG, e.getMessage());
 return null;
 } catch (UnsupportedEncodingException e) {
 BzLog.dumpLog(Log.INFO, TAG, e.getMessage());
 return null;
 }
 return keyRandom;
 }
More Advanced Methods

• Reversing
 – Resource intensive
 – Highly advanced inter-disciplinary skills mandatory
More Advanced Methods

- Debugging
 - Can that be considered a PT technique?
 - Limited
Extreme Penetration Testing

Extreme
Penetration Testing
The Problem

A system must be penetration tested

- Imagine a system or a component that has no GUI whatsoever.
- This is no obstacle for professionals, since proven techniques like Reversing, Memory Analysis, Code Review and Debug will be implemented.
The Problem

• About The system:
 – Passed a full Security Design Review
 – A high complexity, multi layer solution
 – Employs Best Cryptography Practices
 – Employs Best Coding Practices
 – Internal code process, no “normal” interfaces
The Problem

• So, what’s left?
 – Code analysis tests – completed, bugs fixed.
 – Not yet PT’ed

• Is PT even required?
 – ???

If all previously identified bugs are fixed?
Penetration Testing

- Some penetration tests are not about coolness
- Modus operandi:
 - Do not work hard unless absolutely necessary
 - When necessary: work the HARDEST
 - Be very fast! ALWAYS!
PT it is! But...

• No “normal” interfaces
 – No attack entry points
 – Hack tools irrelevant
 – Scan tools irrelevant
PT it is! But...

OK.
The challenge is on!

- Bring in the heavy artillery
 - Memory analysis – not relevant due to cryptography multi layers
 - Disk analysis – not relevant due to no save to disk functionality
So we are left with reversing and debugging.

Reversing is viable but the scope of testing is wide.

Debugging is the only acceptable PT approach.

Eureka!
PT it is! But...

• Ever tried an entire PT from the development environment Debugging?
If I know where to look for:
 - Easy to use Debugging or runtime manipulation

What if I don’t know where to look?
Unit Testing

- unit testing is a software testing method by which individual units of source code, sets of one or more computer program modules together with associated control data, usage procedures, and operating procedures, are tested to determine whether they are fit for use.
PT it is! But...

- **Unit Testing practicality**
 - Whatever unit tests were created – is now legacy to the product/system
 - Can be retested automatically upon any release/version/sprint etc.
 - Each payload requires a unit test to be created individually
 - Coding as a means of hacking is slower by scales
PT it is! But...

- Consider that under modern methods (DevOps, Fast IT) there is never enough time for implementing these techniques.
- Hence, Reversing, Memory Analysis or Debugging are not feasible or practical.
Extreme Penetration Testing

• We need a testing method that is:
 – Simple
 – Comprehensive
 – Accurate, deep and pin pointed
 – FAST!
 – Controllable
Extreme Penetration Testing

• The method:
 – Create a “basic flow” unit test code
 – Sanity test the unit test on testing environment. Verify that the unit test can be run from within a development environment (e.g. Studio)
 – Identify key points of the flow that are to be tested
The method (cont.)

• In the key points:
 – Modify the “basic flow” unit test:
 • Save all parameters, even binary, encrypted, signed, etc. parameters to one single file, serialized.
 • After save – toggle a breaking point.
 • After breakpoint – Read the file and reseed all parameters back from the accepted values.

Familiar concept?
A “file-based” runtime proxy
The method (cont.)

• When the test is stopped –
 – Read the serialized file, using whatever text editor
 – Modify the parameters, web-proxy-style
 – Save

Familiar concept?

A “file-based” runtime proxy
Extreme Penetration Testing

- Demo (by Team Incomplete)
- Disclaimer, scale, shortcuts & others
Extreme Penetration Testing

- Management
 - Having a custom testing method is nice
 - PT is nothing without control
• PT management is an issue
Summary

• One cannot rely on a single security testing approach
 – Design Review
 – Code Analysis
 – Penetration Testing

• Some system testing require innovation
 – Known tools irrelevant
 – Known payloads irrelevant

• Know thy limitations
 – Relying on standard approaches is not enough
Summary

• Innovate
 – Consider each technique advantages and disadvantages
 – Consider PT scope and limitations
 – Create your own technique

• Manage
 – Control the PT process using custom technique

• Success
 – Get that Bonanza!
Questions?