
Reverse Engineering
iOS Applications

Sept.	
 15,	
 2014	

Agenda

•  Technical overview
•  Jailbreaking and accessing apps
•  Exploring and attacking apps
•  Mitigation strategies

Technical Overview

iOS Security Model

•  Security is very important to Apple
•  “iOS Security” doc

–  Black Hat 2012

•  Dev Center Security Overview
–  Risk assessment/threat modeling
–  Coding Practices
–  Authentication

iOS Code Security

•  Secure coding
– Avoid buffer overflows, SQL injection, etc.
– Rely on code signing, sandboxing, etc.

•  Rely on OS-provided features
–  “Don’t reinvent the wheel. When securing

your software and its data, you should always
take advantage of built-in security features
rather than writing your own if at all possible.”

iOS Data Security

•  Data security is the App’s job
–  https://developer.apple.com/library/ios/DOCUMENTATION/Security/Conceptual/Security_Overview/Introduction/

Introduction.html

iOS Security Overview

•  Trust the OS!

iOS Security Controls

•  Why should we trust the OS?
– Code signing
– Anti arbitrary code execution policies

•  ASLR
•  Memory pages marked W^X

–  writable XOR executable
•  Stack canaries

– Sandboxing
– App encryption

iOS Security Controls
•  App encryption

iOS Security Controls
•  Code signing

iOS Security Controls

•  Code execution policies
–  ASLR

•  Address Space Layout
Randomization

–  W^X Memory pages
•  No self-modifying code

–  Stack canaries

iOS Security Controls

•  Sandboxing

Circumventing iOS Controls
• Jailbreaking

– Remove iOS controls
– Gain root access
– Custom kernel
– Privilege escalation

Jailbreak History
•  iPhone 1.0 (June 29th 2007)

•  Jailbroken (July 10th 2007)
•  4.3.2

•  redsn0w 0.9.11x (April 2011)
•  4.3.3

•  jailbreakme.com remote jailbreak (July 2011)
•  5.1.1

•  absinthe 2.0.x (May 2012)
•  6.1

•  evasi0n (Jan 30 2013)
•  7.0

•  evasi0n7 (Dec 2013)
•  7.1

•  Pangu (Jun 23 2014)

Jailbreak History
•  Time to jailbreak increases when:

•  New OS versions
•  New hardware versions

•  Apple continually
patches known exploits

How Does Jailbreaking Work?

How Does Jailbreaking Work (really)?
1.  Find an exploit

–  Exploit the bootrom (limera1n)
–  Exploit WebKit (Jailbreakme.com)
–  Privilege escalation

•  Need root to break the jail

2.  Patch kernel
–  Disable signature checking, etc

3.  Jailbreak the filesystem
–  Split partitions, setting +rw, remove nosuid

4.  Untether
–  Optional, various methods

5.  Utility installation
–  tar, cp, mv, sh, etc

6.  Cydia & post-install

Cydia

•  Open	
 Appstore	

•  iOS	
 dpkg	

Jailbreaking Motivation
•  Why jailbreak?!

–  Adding features
–  Carrier independence
–  OS customization
–  Security auditing
–  Piracy
–  Espionage/Forensics

•  Why develop jailbreaks?

Exploit Types
•  Remote exploit vs local exploit

–  jailbreakme.com exploit just requires a PDF download (<=4.3.3)
–  Current exploits require USB access… for now

•  Certain attack vectors only require local jailbreaks
•  Jailbroken devices in the field
•  Discreet jailbreaking via malware

–  Requires a remote exploit
–  Removal of visible traces (Cydia etc)
–  Remote access to all iOS apps

•  On Android, jailbreaking isn’t necessary for app
redistribution - there is no App Store or code signing

Apple’s Threat Modeling
•  https://developer.apple.com/library/ios/DOCUMENTATION/Security/Conceptual/

Security_Overview/ThreatModeling/ThreatModeling.html

•  Attacks on System Integrity
–  Attacks on system integrity […] modify the system in such a way

that it can no longer be trusted. […] the attacker might be able to:
•  Execute malicious code
•  Impersonate a user or server
•  Repudiate an action

22	
 ARXAN	
 CONFIDENTIAL	

Common Application Integrity Risks
Compromise or circumvention of security controls, e.g., authentication,
encryption, license management / checking, DRM, root / jailbreak
detection

Exposure of sensitive application information, e.g., keys, certificates,
credentials, metadata

Tampering with critical business logic, control flows, and program
operations

Insertion of malware or exploits in the application and repackaging

Exposure of application internals (logic, vulnerabilities) via reverse-
engineering

IP theft (e.g., proprietary algorithms) via reverse-engineering

Piracy and unauthorized distribution

Objective-C

What is it?

 UIView *controllersView = [myViewController view];
 [window addSubview:controllersView];
 [window makeKeyAndVisible];

•  objc_msgSend(id,	
 SEL,	
 ...)	

	

Calls	
 funcLons	
 on	
 classes	
 using	
 a	
 messaging	

framework.	

Objective-C

•  C-style branching

compiler	

Objective-C

•  ObjC-style messaging

compiler	

metadata	

MobileSubstrate
•  Definition

o  Set of APIs that allow hooking of native or Obj-C
functions
o  In-App or System functions

o  Installed during jailbreak

•  Objective-C
o  MSHookMessage

§  Modifies message lookup table

•  C/C++
o  MSHookFunction

§  Overwrites bytes to jump to custom code location

Mobile Substrate, con't

•  Interfaces
•  Cycript

•  JavaScript interface to MS

•  Theos
•  Builds and installs apps/tweaks to MS

•  Attack Vectors
•  Method swizzling
•  Information gathering (method names)
•  etc.

Mobile Substrate Extensions

•  iOS first
•  Now expanding cross-platform

•  iOS
•  Android
•  Java
•  etc

•  http://www.cydiasubstrate.com/

Technical Overview Wrapup

•  Apple’s Security Model
•  Bypassing Apple’s Security Model
•  Objective-C
•  MobileSubstrate

•  Questions?

Hands-On Part 1
App Decryption

Jailbroken iPod

•  iPod 5g
•  iOS 7.1
•  Cydia is pre-installed

Setup: Installing Cydia Apps

•  All pre-installed on iPods
•  Open Cydia
•  Add a repo

–  http://cydia.iphonecake.com/
–  Default Repos host ‘known good’ Apps

•  Install
–  Clutch
–  BigBoss Recommended Tools
–  AppSync

Setup: Installing Cydia apps (cont’d)

•  Clutch
–  App decryption tool

•  BigBoss Recommended Tools
–  otool and many other useful utilities (top, vi, etc)
–  OpenSSH

•  An ssh server so we can connect to the phone

•  AppSync
–  Allows installation of arbitrary IPAs

Setup: Install an App from the App Store

•  Open the App Store
•  Search for “Alien Blue”

– This free app is also open-
source

•  This is also pre-installed

SSH to the device
•  Open a Terminal

–  ⌘+Space for Spotlight
–  Type “Terminal”

•  Start usbmuxd
–  cd ~/usbmuxd/python-client/
–  ./start.sh

SSH to the device (cont’d)
•  Open a new tab

–  ⌘+T
•  ssh in

–  ssh root@localhost –p 2222
–  Default password is ‘alpine’
–  Poke around the iPhone

Note:	

-­‐	
 Keygen	
 may	
 take	
 some	
 Lme	

-­‐	
 usbmuxd	
 bridges	
 localhost’s	
 network	

with	
 the	
 USB	
 device	

iOS decryption
•  IPAs

o  /Payload/
o  /Payload/Application.app
o  /Payload/Application.app/Application

o  (FairPlay encrypted)

o  /Payload/Application.app/[other]
o  /iTunesArtwork
o  /iTunesMetadata.plist

•  Apps are installed by iOS into
“/private/var/mobile/Applications/”

Clutch

•  Command-line tool to decrypt iTunes applications
1.  Loader decrypts app
2.  Clutch sets a breakpoint in loading process
3.  Dumps app from memory
4.  Fixes up load commands

•  Graphical frontends exist
–  Crackulous

The Alien Blue App
•  On the iPod shell

–  Find the AlienBlue installation in /private/var/mobile/Applications
–  Use “otool -l” to print load commands

•  cryptid == 1 tells the loader that this app is encrypted
•  Pipe through “| grep crypt” to get the crypto load commands

Decrypting The App
•  Run Clutch on the phone, specifying “AlienBlue” app
•  App is decrypted into /User/Documents/Cracked

Decrypting The App (con’t)
•  Unzip the IPA (with “unzip” command)
•  Run otool on the app again

Hands-On Part 2:
App Attacking

Bank of Arxan

•  Not Alien Blue
–  Can be decrypted the same way

•  “Practice” banking app
–  Source code provided

•  ~/Desktop/Workshop/Source/
–  Client IPA

•  ~/Desktop/Workshop/Downloads/IPAs/BankDemo_client.IPA
•  We’ll install this via AppSync

–  Server at ~/Downloads/BankDemo_server
•  ~/Desktop/Workshop/Downloads/BankDemo_server
•  Runs on the Mac

Bank of Arxan Client

•  Client Installation
–  Already installed via Xcode Organizer
–  AppSync facilitates this process

•  Start client
1.  On first startup, set a PIN
2.  Review app

Attack Plan

•  Goal
– Remove jailbreak

detection
– Don’t fail “All Tests”

check

Other Attack Vectors

•  Transactions
– Modify transactions
–  Inject additional transactions

•  Data gathering
– Account information
– Login information (username/password)

•  etc

Phase 1 – Theos

Bank of Arxan Static Analysis
•  Find installed app (as before, from ssh)

–  “/private/var/mobile/Applications”

•  Copy app to the Mac (from the Mac)
–  “scp -P 2222 root@localhost:[path_from_above]/BankDemo_client .”
–  Make a backup!

•  cp BankDemo_client BankDemo_client.bak

Bank of Arxan Static Analysis (cont’d)
•  Load app in IDA

– Strings
•  “View”

–  “Open Subviews”
–  “Strings”

•  “Search”
–  “Text”

•  Search for “Cydia”
– Obj-C metadata

•  Functions Window
•  “Search”

–  “Text”
•  Search for “jail”

Jailbreak Detection
- (int) jailbreakDetect
{
 int isJailbroken = 0;
 NSArray *jailbrokenPath = [NSArray arrayWithObjects:
 @"/Applications/Cydia.app",
 @"/usr/sbin/sshd",

 …
 @"/private/var/lib/cydia", nil];
 for(NSString *string in jailbrokenPath)
 if ([[NSFileManager defaultManager] fileExistsAtPath:string])
 isJailbroken = 1;
 else
 isJailbroken = 0;

 return isJailbroken;
}

Bank of Arxan Static Analysis (cont’d)

•  class-dump
–  Method prototypes
–  Class relationships
–  Field definitions
–  Etc

–  “class-dump
BankDemo_client”

•  Let’s attack
jailbreakDetect

Using MobileSubstrate

•  Attack with method swizzling
– Jailbreak function returns 1/0
– Swizzle to always return 0

•  Theos review
– MobileSubstrate interface
– Works on iOS or Mac

Creating a Theos Project

Using MobileSubstrate
•  Existing project

–  ~/theos_proj/removejb
•  “cat Tweak.xm”

–  class-dump prototype

Building Theos Tweaks
•  Build app

–  “make”
–  “make package”

•  Copy package to phone (on Mac)
–  “scp -P 2222 com.yourcompany[snip].deb root@localhost:.”

•  Install tweak (on iPod)
–  “dpkg -i com.yourcompany[snip].deb”

•  Bounce SpringBoard
–  “killall SpringBoard”

•  Rerun Bank of Arxan
client

•  Results?

Removing Jailbreak Detection

Phase 2 - Patching

Swizzling Detection
•  Where is the objc function?

– Ask the loader (dyld)

Swizzling Detection Analysis

•  Back to IDA/Hex-Rays (or source code)

Patching the App

•  Swizzle detection method control flow

•  Function wrapup + epiologue

Patching the App
•  Open app in Hex Fiend

Patching the App (cont’d)
•  Patch two bytes

–  0x4040
–  Turn on Overwrite mode!

•  Edit->Overwrite Mode
–  “otool” will quickly show changes

Deploying the Modified App
•  Copy back to the iPod

– scp -P 2222 BankDemo_client
root@localhost:[path to installed IPA]/

•  Kill app and restart
•  Results?

Removing Swizzling Detection

Detecting Code Modification

•  Checksum
– Hash areas of .text section at runtime

Checksum

66	

Checksum
Protection

Execution

Protected
Range

Checksum:
0x1E2F34BD

0x7f3400EA

Triggered

Attacks and Defenses (what we covered)

•  Jailbreaking
– Jailbreak Detection

•  MobileSubstrate
– Swizzling Detection

•  Application Patching
– Checksumming

Attacks and Defenses (what we didn’t cover)

•  Dynamic Analysis with gdb
– Antidebugging capability

•  Static and dynamic analysis with IDA
– Obfuscation capability

•  IPA modification/redeployment
– Resource verification (on-disk

checksumming)

EnsureIT

•  Provides these controls
–  Inline invocation
– Active response
– Networking ability

•  Many other configurable features

Security Layers

Thanks!
QuesLons?	

