
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Automatic vs. Manual
Code Analysis

Ari KesŠniemi
Senior Security Architect
Nixu Oy
ari.kesaniemi@nixu.com

2009-11-17

OWASP

Agenda

!  Automatic and manual security verification
overview

!  Pros and cons for both techniques

!  Statistics from WASC
!  Application Security Verification Standard and

automatic verification

!  Source code scan problem areas
!  Mixing automatic tools and manual work
!  Conclusion

2

OWASP

Application Security Verification

!  Automated vs. manual

!  Dynamic vs. static
!  Dynamic can be black-box or white-box
!  This presentation focuses on static

3

Dynamic Static

Automatic Dynamic Scan Source Code Scan

Manual Security Test Code Review

OWASP 4

Code Review Techniques

!  Automatic source code scan:
"  Text matching in source code
"  Token matching

"  Abstract syntax tree analysis
"  Input/output path analysis

"  Complexity analysis
"  Statistical analysis

"  Do most automatic code scan findings relate to how
data is handled in the application, and not so much to
the actual behavior and its consequences?

OWASP 5

Code Review Techniques

!  Manual code review:
"  Look for specific signs (! text matching)
"  Attack surface discovery

"  Input/output path analysis
"  Component usage and configuration analysis

"  Authorization logic validation
"  Custom security constraints, e.g. approval procedures

"  Privacy issues

"  Architecture analysis
"  É etc

OWASP

Automatic vs. Manual

!  Manual review by an expert gives
"  probably less false negatives
"  certainly less false positives

"  insight also concerning design and architecture,
overall quality etc

!  OTOH, automatic review is
"  faster

"  broader
"  repeatable

6

OWASP

Interpreting automatic analysis results

!  Every security verification needs conclusions of
results

!  Is security expertise needed?
"  Assessing true positives (real findings)
"  Determining false positives (false alerts)

"  Estimating false negatives (undiscovered
vulnerabilities)

"  Making sure scanning configuration is correct

!  Can we get good suggestions on how to remedy
vulnerabilities automatically?

7

OWASP

Some tools for source code scan

Tool Languages Type

ITS4 C/C++ Token matching

Splint C Semantic matching

Flawfinder C/C++ Text matching

RATS C/C++, Perl, PHP, Python Text matching

LAPSE Java EE Data flow analysis

Fortify 360 SCA

Ounce 6 (IBM AppScan Source Edition)

IBM AppScan

8

OWASP

WASC Web App Security Statistics 2008

9

Source: Web Application Security Consortium (WASC)
http://projects.webappsec.org/Web-Application-Security-Statistics

OWASP

WASC Web App Security Statistics 2008

!  Less than 60% of vulnerabilities are in code

10

OWASP

WASC Web App Security Statistics 2008

!  Whitebox approach (dynamic or static) is
needed to catch vulnerabilities

11

OWASP

OWASP Application Security Verification
Standard (ASVS)

12

OWASP

Types of security verification

Dynamic Static

Automatic Dynamic Scan (1A) Source Code Scan (1B)

Manual Security Test (2A) Code Review (2B)

13

!  In addition, in ASVS

!  level 3 is ÒDesign VerificationÓ (manual)
!  level 4 is ÒInternal VerificationÓ (manual)

OWASP

ASVS

!  High-level requirements

!  Detailed requirements
!  Reporting requirements

!  ÒTools are an important part of every ASVS
level. At higher levels in ASVS, the use of tools is
encouraged. But to be effective, the tools must
be heavily tailored and configured to the
application and framework in use. And, at all
levels, tool results must be manually verified.Ó

14

OWASP

ASVS Detailed requirements

!  V1. Security Architecture
!  V2. Authentication
!  V3. Session Management
!  V4. Access Control
!  V5. Input Validation
!  V6. Output Encoding/Escaping
!  V7. Cryptography
!  V8. Error Handling and Logging
!  V9. Data Protection
!  V10. Communication Security
!  V11. HTTP Security
!  V12. Security Configuration
!  V13. Malicious Code Search
!  V14. Internal Security

15

OWASP

ASVS Verification Requirements Matrix

16

Dynamic Source Code Security Code
Scan Scan Test Review

OWASP

Quasi-scientific quantitative matrix analysis

17

0 2 4 6 8 10 12 14 16

V1: Security Architecture

V2: Authentication

V3: Session Management

V4: Access Control

V5: Input Validation

V6: Output Encoding/Escaping

V7: Cryptography

V8: Error Handling and Logging

V9: Data Protection

V10: Communication Security

V11: HTTP Security

V12: Security Configuration

V13: Malicious Code Search

V14: Internal Security

Source Code Scan (1B) Code Review (2B)

OWASP

Examples of what requirements CAN be
verified using automatic code scan

!  [V5.2] Verify that a positive validation pattern is defined
and applied to all input.

!  [V6.1] Verify that all untrusted data that are output to
HTML (including HTML elements, HTML attributes,
javascript data values, CSS blocks, and URI attributes)
are properly escaped for the applicable context.

!  [V8.1] Verify that that the application does not output
error messages containing sensitive data that could
assist an attacker, including session id and personal
information.

!  [V11.2] Verify that the application accepts only a defined
set of HTTP request methods, such as GET and POST.

18

OWASP

Examples of what requirements CANNOT be
verified using automated code scan

!  [V2.5] Verify that all authentication controls
(including libraries that call external authentication
services) have a centralized implementation.

!  [V2.13] Verify that account passwords are salted
using a salt that is unique to that account (e.g.,
internal user ID, account creation) and hashed
before storing.

!  [V4.4] Verify that direct object references are
protected, such that only authorized objects are
accessible to each user. (This can be of course checked
dynamically.)

19

OWASP

Examples of what CANNOT É (contÕd)

!  [V5.7] Verify that all input validation failures are logged.

!  [V8.6] Verify that each log event includes: 1. a time
stamp from a reliable source, 2. severity level of the
event [É] and 7. a description of the event.

!  [V9.2] Verify that the list of sensitive data processed by
this application is identified, and that there is an explicit
policy for how access to this data must be controlled,
and when this data must be encrypted (both at rest and
in transit). Verify that this policy is properly enforced.

!  [V14.2] Verify that security control interfaces are simple
enough to use that developers are likely to use them
correctly. (This is a level 4 requirement.)

20

OWASP

Problems in automatic source code scan

!  A static analyzer cannot step back and look at
the big picture, e.g. architectural layers

!  Evaluating non-functional security is almost
impossible, e.g. robustness against DoS attack

!  Logic flaws (e.g. in authorization) or missing
security requirements cannot be detected

!  Significant parts of the code may be missed
completely, e.g. when in a different language or
IoC/plugin code

!  Configuration analysis may be problematic as
well

21

OWASP

Mixing automation and manual work

!  Manual code review on paper is pain!

!  Tools are of great value, e.g.:
"  An IDE for traversing code (esp. jumping between

caller and callee)

"  Grep or similar to quickly get pointers to interesting
places and getting overview of technology used

"  Manual testing is good match for manual code
review, and for that good tools (e.g. browser plugins)
are essential

22

OWASP

From manual review to automation

!  Build automated checks for manual findings
"  Doing this statically is not easy without proper tools
"  Dynamic approach may be easier, e.g. targeted

automated scan or unit tests

23

OWASP

Conclusion

!  When, where and how to use automated tools?

!  Web portals implemented on a known and robust
platform using systematic access control may be
very good candidates:
"  Typical findings would be injection problems
"  Probably not much privacy or business assets to protect

!  Complex business web application (e.g. extranet
application) could be harder to verify:
"  Logical checks, privacy more delicate
"  Scalability and transactions to think of

24

OWASP

Conclusion

!  Choice of verification methodology based on risk
analysis

!  Automatic code scan can give a rough
measurement of a system even when run
unconfigured

!  Automatic code scanning is best combined with
manual inspection, and/or as part of
development build cycle
"  Scanner needs to be properly configured, though

25

