
How to Build a Secure Login

Ben Broussard
Kedalion Security

Contents

– How Authentication works
• Pre-Login
• Login Page
• Login Redirect
• Logged In
• Log Out

– Attacks and defenses on each step

Pre-Login

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• Users get to the site in many
ways: Search engine, Bookmarks, Links
from emails, Direct URL entry, iframes
from other sites.

• Request/Response model.
• Users shouldn't be able to complete

most actions before logging in, but they
may be able to begin actions such as
adding items to a cart or setting up a
session.

• Account Creation
• Password Reset

GET / HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (X11; U; Lin...
Accept: text/html,application/xhtml+xml,applica...
Keep-Alive: 115

HTTP/1.1 200 OK
Date: Fri, 29 Apr 2011 17:12:13 GMT
Set-Cookie: skin=noskin; path=/; domain=.example.com; expires=Fri, 29-Apr-
2011 17:12:13 GMT
Content-Type: text/html; charset=ISO-8859-1
Set-cookie: session-id=176-9381406-6210335; path=/; domain=.example.com;
expires=Tue Jan 01 08:00:01 2036 GMT
Content-Length: 156046

<html>
... web page

REQUEST

RESPONSE

Login Page

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• Users can get to the login page by:
o Clicking on the login link on the site

or from an email or another site.
o Attempting to go to a logged in page

without being logged in.
o Making a request to a logged in page

after the session has expired.
• The login page needs to know where to

send the user after successful login.
• Input can include a username,

password, pre-login cookie, anti-CSRF
token, CAPTCHA, and even a second
factor such as an RSA token.

Clicked on Login link

Redirected to Login

HTTP/1.1 302 Found
Location: https://example.com/login/

1. Request to Logged in Page:
GET mail/inbox.php?email_id=11&action=mark_as_read HTTP/1.1

2. 302 Response containing
Set-cookie: go_to=/mail/inbox.php?email_id=11&action=mark_as_read
Location: https://example.com/login.php

3. Request to https://example.com/login.php

4. Response containing Login page:
HTTP/1.1 200 OK
... Other Headers

<html>
... Login Form

5. Request containing credentials:
POST /login.php HTTP/1.1
Host: example.com
Cookie: anonymous_session_id=ff5f109f765de12d3a83ce578e9d44ef; go_to=/mail
/inbox.php?email_id=11&action=mark_as_read

username=ben&password=myrealpassword&csrf_token=6108d48838...

Login Redirect

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• Upon successful verification of the
user's credentials, a redirection
response which contains a Set-Cookie
header is returned.
o Usually an HTTP 302 Found

response with a Location header.
o Sometimes a webpage is returned

which includes a javascript or meta
tag redirect.

• This new cookie is the logged in
session cookie.

1. Response from successful login:
HTTP/1.1 302 Found
Set-Cookie: session_id=617372ea63040f780b16dd992122e170; path=/; secure;
HttpOnly
Location: https://example.com/mail/inbox.php?email_id=11&action=mark_as_read

2. Request to Location value:
GET /mail/inbox.php?email_id=11&action=mark_as_read HTTP/1.1
Host: example.com
Cookie: session_id=617372ea63040f780b16dd992122e170

3. Response containing logged in page:
HTTP/1.1 200 OK
... Other Headers

<html>
... Logged in Page

Logged In

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• Now that the user is logged in, they can
take sensitive actions and look at
sensitive data.

• The user stays logged in because the
browser adds the Cookie header to
every request (with the appropriate
domain, path, flags, etc.).

• Often users have to fill out long forms
that take longer than the inactivity
logout period.

• Users may have multiple tabs open
which makes it difficult to impose an
order on their actions.

POST /payroll/directdeposit.php HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.16)
Gecko/20110323 Ubuntu/10.04 (lucid) Firefox/3.6.16
Cookie: session_id=617372ea63040f780b16dd992122e170

routing_nbr=111111111&acct_nbr=123412341234&csrf_token=c1446f6da1664
50281c91108551ae9b6

HTTP/1.1 200 OK
Pragma: no-cache
Content-Length: 2150
Keep-Alive: timeout=15, max=100
Content-Type: text/html; charset=iso-8859-1

<html>
... web page

REQUEST

RESPONSE

Log Out

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• How do users log out:
o They click on the logout link.
o Their session expires due to inactivity

or absolute timeout.
o They complete an action.
o They navigate to a non-logged-in

section of the site.
• If the user's session didn't expire, they

get a response which contains a Set-
Cookie header that expires the logged
in cookie and then redirects the user.

• Otherwise they get redirected to the
login page.

Clicked on
Logout Link

Logged out
due to
inactivity

Attacks!

The fun stuff.

Attack Goals

• Bypass Login
• Login as another user
• Force logged in users to

take actions
• Get logged in users'

information
• Affect pre-login actions

that affect logged in
actions

• Get users to login to a
known session or account

• Get valid usernames
• Get valid user passwords
• Get valid user email

addresses
• Lockout users

Pre-Login

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• SQL Injection - same database
• XSS as a Social Engineering vector
• Carry over attacks:

o Cookie attacks: XSS, lack of SSL,
Header Injection, token prediction

o Session via URL token (no cookies)
o CSRF and Clickjacking

• User Enumeration:
o Password Reset
o Account Creation
o Login Form

• Inadequate SSL Coverage
• Combination XSS with CSRF to the

logged in section to get sensitive data.

Login Page

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• SQL Injection to bypass verification
• XSS as a key logger
• User Enumeration
• Password Bruteforcing
• SQL Injection for password gathering
• Login CSRF

o Contests
o Stored data
o I was framed!

• Inadequate SSL
• Account Lockout

Login Redirect

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• Header Injection: Location header
• Session Fixation
• Predictable session token
• Forced redirection

o Off site (Referer header)
o CSRF

• Gotta have the SSL
• Javascript or meta tag redirect XSS

Logged In

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• XSS framework for full control (BeEF)
• XSS for session token capture
• SQL Injection via CSRF
• CSRF and Clickjacking
• Inadequate SSL coverage
• Authentication bypass
• Disclosure of URL parameters (Referer)
• AJAX hijacking
• Force Logout

Log Out

– Pre-Login
– Login Page
– Login Redirect
– Logged In
– Log Out

• Forced redirection
• Header injection: Location
• Session reuse / Inadequate log out
• CSRF logout

Conclusions

• Login and Authentication can't be easily segregated from the
applications that use it.

• Pre-Login, subdomains, parent domains, and sister domains
all can affect the Login and Authentication functionality.

• Pre-Login must either have no session or be under SSL.
• User enumeration protection applies to the Login page as

well as Account Creation and Password Reset.
• XSS and SQL Injection are pretty much Game Over.
• Stopping bruteforcing of passwords is difficult, so make the

passwords difficult to bruteforce. Password Rules.
• Javascript redirects can lead to DOM based XSS.
• Update the session cookie during the redirection step.
• Use Cryptography for security related tokens.

Conclusions (cont.)

• Watch what goes into the URL. This can get sent off-site in
the Referer HTTP header.

• Force users to use cookies. There's no excuse anymore.
• A framework or systematic approach should be taken for

Authentication, HTML output, SQL, and CSRF protection.
• AJAX may require CSRF protection for GET requests, too.
• Expiring a session cookie is not a sufficient logout

procedure.

Questions?

ben@kedalion-security.com

