Yes, we get it. Cars, boats, buses, and those singing fish plaques are all hackable and have no security. Most conferences these days have a whole track called "Junk I found around my house and how I am going to scare you by hacking it". That stuff is always going to be hackable whetherornotyouarethecalvalry.org.

... 

So in any case, enough with the Junk Hacking, and enough with being amazed when people hack their junk.
IoT Attack Surface Mapping

Seeking a universal, surface-area approach to IoT testing

Daniel Miessler
IoT Village, DEFCON 23
August 2015
Junk Hacking and Vuln Shaming

Yes, we get it. Cars, boats, buses, and those singing fish plaques are all hackable and have no security. **Most conferences these days have a whole track called "Junk I found around my house and how I am going to scare you by hacking it"**. That stuff is always going to be hackable whetherornotyouarethecalvalry.org.

... 

**So in any case, enough with the Junk Hacking**, and enough with being amazed when people hack their junk.
What’s in a name?

- Universal Daemonization
- Universal Object Interaction
- Programmable Object Interfaces (POIs)
- Transfurigated Phase Inversion

Better names for IOT?

Anything other than "The Internet of Things"
Defining IoT

- [WIKIPEDIA] The Internet of Things (IoT) is the **network of physical objects or "things"** embedded with electronics, **software, sensors and connectivity** to enable it to achieve greater value and service by exchanging data with the manufacturer, operator and/or other connected devices.

- [OXFORD] A proposed development of the Internet in which **everyday objects have network connectivity**, allowing them to send and receive data.

- [MY PREFERRED] The **interface between the physical and digital world** that allows one to gather information from—and control—everyday objects.
What to do?
IoT Security ≠ Device Security
Existing approaches...

- Look at a collection of common vulnerabilities, risks, etc.
- Pull up your go-to list
- Consider some bad scenarios
- Check for what others have found on other devices
The OWASP Internet of Things Top 10 (tentative) - 2014 is as follows:

- I1 Insecure Web Interface
- I2 Insufficient Authentication/Authorization
- I3 Insecure Network Services
- I4 Lack of Transport Encryption
- I5 Privacy Concerns
- I6 Insecure Cloud Interface
- I7 Insecure Mobile Interface
- I8 Insufficient Security Configurability
- I9 Insecure Software/Firmware Updates
- I10 Poor Physical Security

Top 10 Risks

<table>
<thead>
<tr>
<th>OWASP Mobile Top 10 Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1- Insecure Data Storage</td>
</tr>
<tr>
<td>M2- Weak Server Side Controls</td>
</tr>
<tr>
<td>M3- Insufficient Transport Layer Protection</td>
</tr>
<tr>
<td>M4- Client Side Injection</td>
</tr>
<tr>
<td>M5- Poor Authorization and Authentication</td>
</tr>
<tr>
<td>M6- Improper Session Handling</td>
</tr>
<tr>
<td>M7- Security Decisions Via Untrusted Inputs</td>
</tr>
<tr>
<td>M8- Side Channel Data Leakage</td>
</tr>
<tr>
<td>M9- Broken Cryptography</td>
</tr>
<tr>
<td>M10- Sensitive Information Disclosure</td>
</tr>
</tbody>
</table>
The Previous Version

- Used the Top 10 name
- Mixed surfaces with vulnerability types
New OWASP IoT Project Structure

- IoT Project
- Attack Surface Areas
- Testing Guide
- Top Vulnerabilities
Subtle differences in approach
Different approaches to finding vulns

1. Let me check against this list of vulns
Different approaches

1. Let me check against this list of vulns.

2. Let me check my favorite go-to issues
Different approaches

1. Let me check against this list of vulns.

2. Let me check my favorite go-to issues

3. What common surface areas do IoT systems share that I need to make sure I don’t miss?
The IoT Attack Surfaces
Ecosystem Access Control

✓ Authentication
✓ Session management
✓ Implicit trust between components
✓ Enrollment security
✓ Decommissioning system
✓ Lost access procedures
Device Memory

- Cleartext usernames
- Cleartext passwords
- Third-party credentials
- Encryption keys
Device Physical Interfaces

- Firmware extraction
- User CLI
- Admin CLI
- Privilege escalation
- Reset to insecure state
Device Web Interface

- SQL injection
- Cross-site scripting
- Username enumeration
- Weak passwords
- Account lockout
- Known credentials
Device Firmware

- Hardcoded passwords
- Sensitive URL disclosure
- Encryption keys
Device Network Services

- Information disclosure
- User CLI
- Administrative CLI
- Injection
- Denial of Service
Administrative Interface

- SQL injection
- Cross-site scripting
- Username enumeration
- Weak passwords
- Account lockout
- Known credentials
Local Data Storage

- Unencrypted data
- Data encrypted with discovered keys
- Lack of data integrity checks
Cloud Web Interface

- ✔ SQL injection
- ✔ Cross-site scripting
- ✔ Username enumeration
- ✔ Weak passwords
- ✔ Account lockout
- ✔ Known credentials
Third-party Backend APIs

- Unencrypted PII sent
- Encrypted PII sent
- Device information leaked
- Location leaked

Third-party Backend APIs
Update Mechanism

- Update sent without encryption
- Updates not signed
- Update location writable
Mobile Application

✓ Implicitly trusted by device or cloud
✓ Known credentials
✓ Insecure data storage
✓ Lack of transport encryption
Vendor Backend APIs

- Inherent trust of cloud or mobile application
- Weak authentication
- Weak access control
- Injection attacks
Ecosystem Communication

- Health checks
- Heartbeats
- Ecosystem commands
- Deprovisioning
- Update pushes
Network Traffic

- LAN
- LAN to Internet
- Short range
- Non-standard
IoT Attack Surface Areas

- Ecosystem Access Control
- Device Web Interface
- Administrative Interface
- Ecosystem Communication
- Update Mechanism
- Network Traffic
- Device Memory
- Device Firmware
- Local Data Storage
- Vendor Backend APIs
- Mobile Application
- Device Physical Interfaces
- Device Network Services
- Cloud Web Interface
- Third-party Backend APIs
- Vendor Backend APIs

Network Traffic

Ecosystem Access Control

Device Web Interface

Administrative Interface

Ecosystem Communication

Update Mechanism

Network Traffic

Device Memory

Device Firmware

Local Data Storage

Vendor Backend APIs

Mobile Application

Device Physical Interfaces

Device Network Services

Cloud Web Interface

Third-party Backend APIs

Vendor Backend APIs
The OWASP IoT Attack Surfaces Project

https://www.owasp.org/index.php/OWASP_IoT_Attack_Surface_Areas
<table>
<thead>
<tr>
<th>Attack Surface</th>
<th>Vulnerability</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Administrative interface</td>
<td>• Weak password policy</td>
<td>• Credentials</td>
</tr>
<tr>
<td></td>
<td>• Lack of account lockout</td>
<td></td>
</tr>
<tr>
<td>• Local data storage</td>
<td>• Data stored without encryption</td>
<td>• PII</td>
</tr>
<tr>
<td>• Web Cloud Interface</td>
<td>• SQLi</td>
<td>• PII</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Account data</td>
</tr>
<tr>
<td>• Device Firmware</td>
<td>• Sent over HTTP</td>
<td>• Credentials</td>
</tr>
<tr>
<td></td>
<td>• Hardcoded passwords</td>
<td>• Application data</td>
</tr>
<tr>
<td></td>
<td>• Hardcoded encryption keys</td>
<td></td>
</tr>
<tr>
<td>• Vendor Backend APIs</td>
<td>• Permissive API Data Extraction</td>
<td>• PII</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Account data</td>
</tr>
<tr>
<td>• Device Physical Interfaces</td>
<td>• Unauthenticated root access</td>
<td>• ***</td>
</tr>
</tbody>
</table>
Back to the network...

Network Traffic

- LAN
- LAN to Internet
- Short range
- Non-standard
What people think they have
What people actually have

cleartext honeytoken

cleartext sensitive data

cleartext sensitive data

cleartext sensitive data
What I like to look for in pcaps

1. How many connections were made?
2. To how many destinations?
3. Was the sensitive data I entered into the ecosystem seen in the network traffic?
4. If so, that’s bad
A quick and dirty PCAP parser that helps you identify who your applications are sending sensitive data to without encryption. — Edit

Added main code.

**danielmiessler** authored 3 days ago

latest commit 2f606c63d2

- README.md  Updated readme.
- caparser.sh  Added main code.

---

**caparsearch**

A quick and dirty PCAP parser created to assist network traffic analysis in IoT and Mobile security assessments, **caparse** shows you where your applications are sending cleartext sensitive data.
Getting your capz

Dualcomm DCGS-2005L
10/100/1000Base-T Gigabit Network TAP (Plastic Case)

by Dualcomm

13 customer reviews
5 answered questions

Price: $179.95 Prime | FREE One-Day

Only 13 left in stock.

Sold by Dualcomm and Fulfilled by Amazon. Gift-wrap available.

- USB Powered Gigabit Network Tap
- PoE Inline Power Pass-Through
- Also function as a 5-Port Gigabit Ethernet Switch
- No Software Configuration Needed. Plug & Play
- Portable.
ONE DOES NOT SIMPLY

DO INTERNET-BASED DEMOS AT DEFCON
daniel at evolus in ~/Development/caparser (master••)
The OWASP IoT Attack Surfaces Project

https://www.owasp.org/index.php/OWASP_IoT_Attack_Surface_Areas

OWASP IoT Attack Surface Areas
A quick and dirty PCAP parser that helps you identify who your applications are sending sensitive data to without encryption. — Edit

A quick and dirty PCAP parser created to assist network traffic analysis in IoT and Mobile security assessments, *caparse* shows you where your applications are sending cleartext sensitive data.
Sister projects

I Am The Cavalry

BUILDITSECURE.LY
This is a Craig Smith Slide

Craig Smith
Takeaways and Goodies

1. IoT testing is the same as any other testing
Takeaways and Goodies

1. IoT testing is the same as any other testing
2. IoT security is NOT device security
Takeaways and Goodies

1. IoT testing is the same as any other testing
2. IoT security is NOT device security
3. The IoT Attack Surface area project is proposing a universal attack strategy for any kind of device
Takeaways and Goodies

1. IoT testing is the same as any other testing
2. IoT security is NOT device security
3. The IoT Attack Surface area project is proposing a universal attack strategy for any kind of device
4. A big part of that is the network piece
1. IoT testing is the same as any other testing
2. IoT security is NOT device security
3. The IoT Attack Surface area project is proposing a universal attack strategy for any kind of device
4. A big part of that is the network piece
5. Caparser is a tool that can do that analysis for you
Takeaways and Goodies

1. IoT testing is the same as any other testing
2. IoT security is NOT device security
3. The IoT Attack Surface area project is proposing a universal attack strategy for any kind of device
4. A big part of that is the network piece
5. Caparser is a tool that can do that analysis for you
6. **Caparser is free, released today, and will be improved in the near future**
Takeaways and Goodies

1. IoT testing is the same as any other testing
2. IoT security is NOT device security
3. The IoT Attack Surface area project is proposing a universal attack strategy for any kind of device
4. A big part of that is the network piece
5. Caparser is a tool that can do that analysis for you
6. Caparser is free, released today, and will be improved in the near future
7. **Craig Smith is awesome**
Takeaways and Goodies

1. IoT testing is the same as any other testing
2. IoT security is NOT device security
3. The IoT Attack Surface area project is proposing a universal attack strategy for any kind of device
4. A big part of that is the network piece
5. Caparser is a tool that can do that analysis for you
6. Caparser is free, released today, and will be improved in the near future
7. Craig Smith is awesome
8. There’s a handout!
IoT Testing Guidance

Insecure Web Interface
- Assess any web interface to determine if weak passwords are allowed
- Assess the account lockout mechanism
- Assess the web interface for XSS, SQLi, and CSRF vulnerabilities and other web application vulnerabilities
- Assess the use of HTTPS to protect transmitted information

Insufficient Authentication
- Assess the solution for the use of strong passwords where authentication is needed
- Assess the solution for implementation of two-factor authentication where possible
- Assess password recovery mechanisms
- Assess the solution for the option to require strong passwords
- Assess the solution for the option to force password expiration after a specific period
- Assess the solution for the option to change the default username and password

Privacy Concerns
- Assess the solution to determine the amount of personal information collected
- Assess the solution to determine if collected personal data is properly protected using encryption at rest and in transit
- Assess the solution to determine if ensuring data is de-identified or anonymized

Lack of Transport Encryption
- Assess the solution to determine the use of encrypted communication between devices and between devices & Internet
- Assess the solution to determine if accepted encryption practices are used and if proprietary protocols are avoided
- Assess the solution to determine if a firewall option is available

Insufficient Security Configurability
- Assess the solution to determine if password security options are available
- Assess the solution to determine if encryption options (e.g., enabling AES-256 where AES-128 is the default setting) are available
- Assess the solution to determine if logging for security events

Insecure Cloud Interface
- Assess the cloud interfaces for security vulnerabilities
- Assess the cloud-based web interface to ensure it disallows weak passwords
- Assess the cloud-based web interface to ensure it includes an account lockout mechanism
- Assess the cloud-based web interface to determine if two-factor authentication is used
- Assess any cloud interfaces for XSS, SQLi, and CSRF vulnerabilities and other vulnerabilities
- Assess all cloud interfaces to ensure transport encryption is used
- Assess the cloud interfaces to determine if the option to require strong passwords is available

Insecure Software/Firmware
- Assess the device to ensure it includes update capability & can be updated quickly when vulnerabilities are discovered
- Assess the device to ensure it uses encrypted update files and that the files are transmitted using encryption
- Assess the device to ensure it uses signed files and then validates that file before installation

Insecure Mobile Interface
- Assess the mobile interface to ensure it disallows weak passwords
- Assess the mobile interface to ensure it includes an account lockout mechanism
- Assess the mobile interface to determine if it implements two-factor authentication
- Assess the mobile interface to determine if it uses transport encryption
- Assess the mobile interface to determine if the option to require strong passwords is available
- Assess the mobile interface to determine if the option to change the default username and password is available
- Assess the mobile interface to determine the amount of personal information collected

Insecure Network Services
- Assess the solution to ensure network services don’t respond poorly to buffer overflow, fuzzing or denial of service attacks
- Assess the solution to ensure test ports are not present
Thank you!

The OWASP IoT Attack Surfaces Project
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project

Caparser
https://github.com/danielmiessler/caparser
@danielmiessler
@craigz28

TX to HP Fortify on Demand