OWASP Germany 2008 Conference
http://www.owasp.org/index.php/Germany

XSSDS und noXSS

Server- und Browser-basierte XSS Erkennung

Martin Johns
University of Passau, ISL
martin.johns@uni-passau.de

OWASP Jeremias Reith

Erankfurt, 25.11.08 pnlver5|ty of Hamburg, SVS
jr@noxss.org

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.org

About us: The (n0)XSS(DS) team

Martin Johns
e PhD candidat at Uni Passau

Jeremias Reilth
e MasterOs student at Uni Hamburg

Bjsrn Engelmann (bjoern@noxss.org)

e Former masterOs student at Uni Hamburg

Joachim Possega
e Professor at Uni Passau

mailto:bjoern@noxss.org
mailto:bjoern@noxss.org

Motivation

Cross-Site Scripting (XSS) Is almost ubiquitous

Server-side:

e Noticing that your applications are vulnerable is hard
e The server only sees character-streams
e JavaScript is interpreted in the browser
e Exploitation happens on the client-side

Client-side:

e As XSS is a client-side attack, the user should be able to
protect himself

e Threats from JS exceed the scope of the attacked
application

e JavaScript malware

Our approaches: XSSDS (server) and noXSS (client)

Security Law

Background: XSS

XSS == JavaScript injection

Two basic types:

@(in Parameter)
* Reflected XSS Database WebApp D
— —y
@(in Content) User
}@(in Link)
8Adversary
Database..<— WebA <2
» Stored XSS atabaseg. = WebApp — 8
A User
.......... ‘o

Institute of
IT-Security and
Security Law

SL

Observations

Web applications are (from the outside) rather straight
forward

e [nput: Parameters

e Output: HTML

e -> (semi-)functional relationship

Two basic observations

e There Is a strong correlation between incoming parameters
and and outgoing reflected XSS

e The set of legitimate JavaScripts of a given application is
bounded

Based on these two observation we can design two
detectors

Observation |

The set of legitimate JavaScripts of a given application
IS bounded
e The applicationOs source code is finite

e Hence, there Is a limited amount of source code responsible
for creation of JavaScript code

e Such code can only produce a limited amount of script-
variants

e (modulo dynamic data-values)

Concluding detection method

e Watching the outgoing HTTP traffic to all legitimate
scripts

e [f we know all legal scripts, all unknown scripts have to be
Injected

Security Law

Detector |

\\
N o«

\/.; >

i
Web server XSSDS I
Training phase:
e Passively monitor HTTP traffic of regular application usage
e E£.g., during implementation, testing, and closed beta
e Parse resulting HTML, extract and store all JavaScripts

e Stop when no new scripts are encountered

e Complete coverage Is feasible, as we monitor complete
application usage

Detection phase
e Continue to extract outgoing scripts
e Alert unknown scripts to the siteOs operator

SL

Institute of
IT-Security and
Security Law

Script types

Static scripts
e Always remain the same independent from parameters

Dynamic scripts
e Generated on the fly based on incoming (or server-side) data

Script types: Dynamic scripts

Data-dynamics (very common)
e Script content is static but data-values differ

echo "alert(‘hello " + $name + "I');";

e Solution: Replace data-values with generic placeholders

alert(STRING);

Code-repetition

e Script contains reoccurring code, very likely due to loops In
the generating code

a[1] = "foo";

a[99] = "bar";

e Solution: Aim to learn all variants

Selective code omission
e Solution: Aim to learn all variants

SL

Institute of
IT-Security and
Security Law

Script types: External scripts

<script src=Ohttp://www.host.com/path/s.js">

In-domain
e Treat same as inline scripts

Cross-domain
e The actual script content is not seen by the detector

e Hence, instead learn a set of known external URLS

e ...and hope the external script-providers produce their
scripts securely

Potential pitfall

eval(some_var);

Dynamic client-side code generation
e eval() of dynamic string constants

e Solution:

e During script tokenizing all string constants are examined If
they contain JavaScript code

* |n such cases, these constants are treated as additional script-
Instances

e Drawback: Potential source for false positives

Institute of
IT-Security and
Security Law

SL

Implementation

Crucial:
e Reliable script extraction

Problem:
e Browser-specific lax and forgiving HTML parsing

e General purpose HTML parser libraries miss obfuscated
Injection methods

Solution
e Use the actual browser code
e Our prototype utilized the Firefox parser

e Production-level implementations should use more than one
parsing engine

Security Law

Evaluation

Data-set
e VVulnerable open-source application

e Real-life web apps

Test-vectors

Absut.com: amazoncom onli:h&fé

FRo¥ | O] FoToLoG

m Yh_HoOlNEwsYUu
' mE@home Kised News

oh" ..
1
Y
\

e EXisting Issues flickr 50
® I\/Ia_nually Inserted WI:'PECIH)IA d)‘ @ 5 Bl_ogger ('J)
SCripts B % roRUM L
_ (7)) heise Neyarihilfe DEUTSCHES
@ - W //) online RECHT
Methodology e bbete) oo iogesns | mobber B e
e True vulns o WRHEEE Coogle Shedew tor Simes .
e Is the issue reported? @z ROk BShOp) i iy g}l’;&lﬂut%
o Fal it ainkET p—r 0
alse positves Xanga. o b USUALtl\LnAbRT
* k-fold cross-validation

IT- S ty and
eeeee ity Law

ISL:

Results

D ete Ctl O n ra.te detector performance - distribution

100

e All issues were reported %

80
e This results in a o |
false negative rate of O

glenerilc XSIS det:ac:torI — _

60 -
50 -
40 -
30
20
10

% of webapps

| | | | | |
0O 01 02 03 04 05 06 0.7 0.8
false-positives/page

False positives
e 80% of the tested applications exposed no false positives

e The remaining 20% caused a varying amount of false
positives

* The majority of these issues was due to non-trivial dynamic
code-generation which is not jet handled by our detector
e E.g., dynamic generation of variable-names

* In most cased easily fixed by customization

Institute of
IT-Security and
Security Law

SL

Observation Il

There Is a strong correlation between incoming
parameters and and outgoing reflected XSS

@(in Parameter)
—

-
Database
— —

A(in Content)/A User

@(in Link)

‘s

Adversary

By matching incoming parameters against outgoing
scripts, reflected XSS attacks should be detectable

Request “"“\\\

111 e — i &
Parameters
Y

User
Response _4,,//‘

Scripts

Institute of
IT-Security and
Security Law

ISL

Problem: (De|En)coding

Incoming data Is transformed during processing

%5C%22%3B+do.something.evil%28%27%26nbsp%3B%27%29%3B+%2F%2F

Decode move URL encoding)
"""""""""" \"; do.something.evil(' '); //

Filter ne)

Encode rtial |S String escaping)
------------------- \\"; do.something.evil(' "); //

Insert

— <script=a = "\\"; do.something.evil(' "); //";</script>

--> Dumb matching on a character level is infeasible

Institute of
IT-Security and OWASP e

Security Law

ISL

Solution

Applying recursive encoding removal on both

parameters and scripts

Y

remove URL Encoding |(%3C— <)

remove)S String Encoding

(\<—<)

Y

remove HTML Encoding

Y

changed? ‘

6no

yesl
I

Institute of
IT-Security and
Security Law

SL

(< — <)
(<: = <)
(&#Xx3C; = <)

Solution

Applying recursive encoding removal on both
parameters and scripts

%5C%22%3B+do.something.evil%28%27%26nbsp%3B8%27%29%3B+%2F%2F

Y

A (recursive encoding removal)
‘* " do.something.evil(' '); //
Filter :
* substrin:g match
Encode
* <script=a =""; dD.SDH"lEt.hiﬂg.EV”(' N/ </script>
Insert (recursive en'coding removal)

» <script>a = "\\"; do.something.evil(' ’); //";</script>

Remaining problem
e |f we have to deal with removal filters, further obstacles
occur

Institute of
IT-Security and
Security Law

SL

Detector |l

Implementation of the outlined detection approach as
server-side detector
e For detalls and results see the paper

Instead, we will talk about applying this technique
within the browser

The Idea

* Firefox extension for client side XSS detection
e Usable with official Firefox (i.e. no Patching required)
 Allows limitation to Firefox specific vectors

 Request/response matching from the XSSDS

e Should have a lower false positive rate than classical
approaches

¥More manageable than pattern based approaches

new RegExp(
'(?:\wSW\Wu0080-\WuFFFRFW\JWSWSTA NN NSWST* (2 \W(NS\ST*\WV) [=) | (2
fuzzify(‘eval|open|alert|confirm|prompt|set(?: Timeout|Interval)|[fF]unction’) +

YNSWSTH((?: +fuzzify(‘setter|location')+)Ns\SJ*=));

s.match(/A\b(?:openjeval|set(?:Timeout|Interval)|[fF]unction| with N[N
splitfreplace|toString|substr(?:ing)?|Image|fromCharCode|toLowerCase|unescape]|
decodeURI(?:Component)?|atob|btoa|\${ 1, 2D\s*(2:\\\s\S]*?2)2\([\s\S]*\)/);

SL

Institute of
IT-Security and
Security Law

Request/Response Matching

* On every request relevant request data is matched
against extracted code

A match of a given length Is treated as a potential
XSS attempt

* Matching is applied to code only

Matching on
HTML could be ®00 Mozilla Firefox
d O n e b u t iS rat h e r (-« C~ v ote |ert(OXSSO)</Scr|pt> > Vx
cum be rsome <hl>Search results</ h1>
<p>You search for '< script >a|ert(“XSS")</) script >' did npt match any
documents.</ p>
<p> Search again:</ p>
Z <form method ="GET" action ="search.php” >
- <input type="text" name="key" vaIue:"<script>alert("XSS")()/ script >">
<input type ="submit" value ="Search" >
</ form >

o T M
IT-Security and

Security Law

ISL

JavaScript Interception

e JavaScript code extraction is not easy

* \We will miss any code not directly embedded within
the web page

* Hook Into the Interpreter and intercept any
iInvocation of JavaScript

®00 Mozilla Firefox @)
| Browser Component ' (4 >)') (C‘) (H ...arch.php?key=<embed src=O

A6Ly93d3cudzMub3JnLzIwMDAvc3ZnliB4bWxucz0iaHROcDovL3d3dy53My5vemev
Interce ptor MjAWMC9zdmcilHhtbG5zOnhsaW5srPSJodHRwOISvd3d3LnczLm9yZy8xOTK5L3hs

aW5rliB2ZXJzaW9uPSIxLjAilHg9ljAIIHKIIjAIIHdpZHRoPSIXOTQilGhlawdodDOiMj

Aw liBpZDO0ieHNzlj48c2NyaXBOIHR5cGU9INRIeHQVZWNtY XNjcmlwdCI+YWxIcnQollh

TUylpOzwvc2NyaXBOPjwvc3ZnPg==" type ="image/svg+xml"

| J aVa.SC ri pt E N g | ne ' AllowScriptAccess ="always" ></ embed>

Institute of
IT-Security and
Security Law

ISL

Decoding and the Mirror

e ReflectionOs origin may be blurred

* Transform input in the same way the web application
did?

* Redo URL decoding and character set conversion

* Handle other transformations

®00 Mozilla Firefox -]
7 Ve N
<) (C | ...arch.php?key=%3Cscript%3Ealert%28%22XSS P v |
alert%28%22XSS%22%29 N D (CI(
<h1>Search results</ hl>
<p>You search for '< script >alert("XSS")</ script >' did not match any
" " documents.</ p>
alert(XSS) <p> Search again:</ p>
<form method ="GET" action ="search.php” >
<input type="text" name="key" value="<script>alert("XSS") </ script >">
al< script >ert("XSS") al\nert("X\0SS") Syput ype =isubmitt - value =iSearcht >
</ form >

Institute of
IT-Security and
Security Law

SL

Subsequence Matching

* A web application might insert or remove arbitrary
characters

 Matching is done with an ALCS (All substrings
longest common subsequence) variant

e Algorithm Is using suffix trees

al\Dert(OXS\nSO)

W

al rt(‘XSS)

Tokenization

e Some matches in JavaScript code may be legitimate

* Count the number the JavaScript tokens a match
consists of

 Matches spanning more than 2 tokens are
considered harmful

®00 Mozilla Firefox (@

(4 FB (\,) (H _com/ .' ave

|OK_VAR |OK_NAME IOK_ASSI(‘NFOK_STRING >ﬁ ——

TOK_PLUS TOK_LP TOK_NEW TOK_NAME TOKI var one_px - * (htips{mal. google.commatlimaesic.gi2t= ")
TOK_RP TOK_RP TOK_DOT TOK_LP TOK_RP (new Date()).get Frme(j S

</ script >
TOK_SEMI

Institute of
IT-Security and
Security Law

ISL

http://mail.google.com
http://mail.google.com

Script file injection

* There Is one case we have to cover in the markup

realm

e The URL of included scripts via <script src=0...0>

might be manipulated

* \We will check the prefix of the URL

Institute of
IT-Security and
Security Law

ISL

®00 Mozilla Firefox

(4_ >):) (C‘) (u '...arch.php?key=<scfip

<hl>Search results</ h1> I
<p>You search for '< script srcz()//a@cker.com/xss.js())
any documents.</ p>
<p> Search again:</ p>

<form method ="GET" action ="search.php” >

>' did not match

</ script >">
<input type ="submit" value ="Search" >

</ form >

Cross Site Data Tainting

e Sometimes a payload Is stored with session data on
the server

* [t might be inserted in a subsequent request

* We will taint any data passed across domains and
check them in addition to current request data

Implementation - NOXSS

 Normal Firefox extension

e With binary components

e Uses JSD to intercept JavaScript

e Embedded SpiderMonkey is used for tokenization
e Uses exact substring matching at the moment

e Available on noXSS.org

NoXSS Performance

Firefox B |SD B noXSS

12,000

9,000

» 6,000
S

3,000

Firefox 3.0.3 running SunSpider 0.9*

*Dual Xeon 5150 (4x 2.66)
@) Institute of
'5' IT-Security and OWASP

Security Law

Evaluation

* Public evaluation via addons.mozilla.org

e ~65 average daily users over nearly two months
e Two classes of false positives

e Script file injection (host name also in URL)

* Multiple JavaScript keywords in URL

 http://osvdb.org/search?request=document.write

* https://developer.mozilla.ora/en/DOM/
document.getElementByld

http://osvdb.org/search?request=document.write
http://osvdb.org/search?request=document.write
https://developer.mozilla.org/en/DOM/document.getElementById
https://developer.mozilla.org/en/DOM/document.getElementById
https://developer.mozilla.org/en/DOM/document.getElementById
https://developer.mozilla.org/en/DOM/document.getElementById

Future Work

* Incorporate interceptor API into Firefox
e Add public parser API to SpiderMonkey

* Implement a fast inexact matching algorithm

* Analysis of matched tokens for false positive
reduction

e Better handling of script file injections

 Handling of repeated dynamic code generation (e.q.
via setlnterval())

The End

(__ [http://example.com/search.htmi?q=%3C%62%6F%64%7 9%20%6FX6EXECXEFX%61%64%3[D v)

The page at http://example.com says:

' Thanks for your attention!

—

Institute of
IT-Security and
Security Law

ISL

