
Secure Coding with Python

OWASP Romania Conference 2014

24th October 2014, Bucureşti, România

• About Me

Started to work in IT in 1997, moved to information security in 2001. Working
in information security for over a decade with experience in software security,
information security management, and information security R&D.

Worked in many roles like Senior Security Engineer, Security Architect,
Disaster Recovery Specialist, Microsoft Security Specialist, etc… etc...

Leader of “OWASP Python Security” Project

• http://www.pythonsecurity.org/

Co-Leader of “OWASP Project Metrics” Project

• https://github.com/OWASP/OWASP-Project-Metrics

24th October 2014, Bucureşti, România 2

http://www.pythonsecurity.org/
https://github.com/OWASP/OWASP-Project-Metrics

• OWASP Python Security Project

A new ambitious project that aims at making python more
secure and viable for usage in sensitive environments.

• We have started a full security review of python by checking
core modules written in both C and python

• First goal is to have a secure layer of modules for LINUX

The security review takes a lot of time and we are slowly
publishing libraries and tools, documentation will follow 

24th October 2014, Bucureşti, România 3

• OWASP Python Security Project

Python Security is a free, open source, OWASP Project that aims at
creating a hardened version of python that makes it easier for
security professionals and developers to write applications more
resilient to attacks and manipulations.

Our code in GITHUB:

• https://github.com/ebranca/owasp-pysec/

Known Issues in python modules concerning software security:

• https://github.com/ebranca/owasp-pysec/wiki/Security-Concerns-
in-modules-and-functions

24th October 2014, Bucureşti, România 4

https://github.com/ebranca/owasp-pysec/
https://github.com/ebranca/owasp-pysec/wiki/Security-Concerns-in-modules-and-functions

24th October 2014, Bucureşti, România 5

http://web.nvd.nist.gov/view/vuln/statistics

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Total Software Flaws (CVE)
01/2001 to 12/2013

Series1

After checking statistics generated from
vendors we have to also check data
generated by the community at large.

Statistics on publicly disclosed vulnerabilities
are available at the site “NIST.gov” under the
name “National Vulnerability Database”

http://web.nvd.nist.gov/view/vuln/statistics

We will review vulnerability stats:
- By Access vector
- By Complexity
- By Severity
- By Category

Then we will formulate some conclusions.

http://web.nvd.nist.gov/view/vuln/statistics

24th October 2014, Bucureşti, România 6

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Number of Software Flaws (CVE)
by Access Vector

Series1 Series2 Series3

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Trend of Software Flaws (CVE)
By Access Vector

Series1 Series2 Series3

http://web.nvd.nist.gov/view/vuln/statistics

24th October 2014, Bucureşti, România 7

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Number of Software Flaws (CVE)
by Complexity

Series1 Series2 Series3

http://web.nvd.nist.gov/view/vuln/statistics

0

1

2

3

4

5

6

7

8

9

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Trend of Software Flaws (CVE)
by Complexity

Series1 Series2 Series3

• Initial review of “National Vulnerability Database”

statistics revealed:

– Number of public vulnerabilities relaying on “network” is
decreasing

– Number of public vulnerabilities relaying on “local
network” access (adjacent networks) in increasing

– Number of public vulnerabilities relaying on “local access
only” access in increasing

– Medium or low complexity Vulnerabilities are preferred

24th October 2014, Bucureşti, România 8

• Analysis of the “Web Application Vulnerability

Statistics 2013” report revealed:

– Rate of server misconfigurations is increasing

– Authentication issues are increasingly not checked

– Authorization issues are increasingly not checked

– Server application headers are not sanitized

– Server application error are not filtered

– Server default files/dirs are left accessible

24th October 2014, Bucureşti, România 9

• How network configurations can impact internal
code operations?

• IP Fragmentation
– https://isc.sans.edu/forums/diary/IP+Fragmentation+Attacks/13282

– http://www.snort.org/assets/165/target_based_frag.pdf

– http://www.icir.org/vern/papers/activemap-oak03.pdf

• Depending on the system reading the fragmented packets
arriving at the NIC, the reassembly process can either DESTROY
or REASSEMBLE the original stream, as an application may have
sent valid data but the receiving end may see only random data.

24th October 2014, Bucureşti, România 10

https://isc.sans.edu/forums/diary/IP+Fragmentation+Attacks/13282
http://www.snort.org/assets/165/target_based_frag.pdf
http://www.icir.org/vern/papers/activemap-oak03.pdf

24th October 2014, Bucureşti, România 11

def genjudyfrags():
pkts=scapy.plist.PacketList()
pkts.append(IP(flags="MF",frag=0)/("1"*24))
pkts.append(IP(flags="MF",frag=4)/("2"*16))
pkts.append(IP(flags="MF",frag=6)/("3"*24))
pkts.append(IP(flags="MF",frag=1)/("4"*32))
pkts.append(IP(flags="MF",frag=6)/("5"*24))
pkts.append(IP(frag=9)/("6"*24))

return pkts

This section of code will generate
six packet fragments as outlined in
“IP Fragment Reassembly with
scapy“ with the offsets specified in
the Shankar/Paxson and Novak
papers.

The picture is taken from
the Novak paper and
represent the final packet
order per each reassembly
policy.

http://www.snort.org/assets/165/t
arget_based_frag.pdf

python -OOBR reassembler.py –demo

Reassembled using policy: First (Windows, SUN, MacOS, HPUX)

11111111111111111111111144444444222222222222222233333333333333333333333366666
6666666666666666666

Reassembled using policy: Last/RFC791 (Cisco)

11111111444444444444444444444444444444442222222255555555555555555555555566666
6666666666666666666

Reassembled using policy: Linux (Umm.. Linux)

11111111111111111111111144444444444444442222222255555555555555555555555566666
6666666666666666666

Reassembled using policy: BSD (AIX, FreeBSD, HPUX, VMS)

11111111111111111111111144444444444444442222222233333333333333333333333366666
6666666666666666666

Reassembled using policy: BSD-Right (HP Jet Direct)

11111111444444444444444444444444222222222222222255555555555555555555555566666
6666666666666666666

24th October 2014, Bucureşti, România 12

• What about numeric operations?

As an example we will take in consideration LINUX.

Many security operations are based on random numbers and
every linux system using any cryptographic function can be
impacted by the lack of good entropy.

What is generally overlooked is that under linux almost every
process uses entropy when is created and even the network
stack uses entropy to generate the “TCP-syncookies”.

24th October 2014, Bucureşti, România 13

• This is an expected behavior and is working as designed.

• Spawning a process uses (on average) 16 bytes of entropy per
“exec()”, therefore when server load spikes entropy is quickly
depleted as the kernel is not generating entropy fast enough.

• Also when a system is built to use “Stack Smashing Protector”
(SSP) by default it uses “/dev/urandom” directly, this tends to
consume all the kernel entropy.

• Almost all modern Linux systems use “Address space layout
randomization“ (ASLR) and stack protections that need a small
amount of entropy per process. Since “/dev/urandom” always
remixes, it doesn't strictly run out, but the entropy drops.

24th October 2014, Bucureşti, România 14

• In fact many linux command used to check the amount of
entropy are “consuming” it and may lead to it’s depletion.

• For example this command will “consume” entropy
– watch cat /proc/sys/kernel/random/entropy_avail

• But this python one-line script will NOT use entropy:
– python -c "$(echo -e "import time\nwhileTrue:\n time.sleep(0.5)\n

print open('/proc/sys/kernel/random/entropy_avail', 'rb').read(),")"

• Also the command “inotifywatch-v -t 60 /dev/random” will
monitor the access to “/dev/random” without using entropy

24th October 2014, Bucureşti, România 15

• What happens to the entropy level in a
working linux server under average load?

24th October 2014, Bucureşti, România 16

0

50

100

150

200

250

1
1

7
3

3
4

9
6

5
8

1
9

7
1

1
3

1
2

9
1

4
5

1
6

1
1

7
7

1
9

3
2

0
9

2
2

5
2

4
1

2
5

7
2

7
3

2
8

9
3

0
5

3
2

1
3

3
7

3
5

3
3

6
9

3
8

5
4

0
1

4
1

7
4

3
3

4
4

9
4

6
5

4
8

1
4

9
7

5
1

3
5

2
9

5
4

5
5

6
1

5
7

7
5

9
3

6
0

9
6

2
5

6
4

1
6

5
7

6
7

3
6

8
9

7
0

5
7

2
1

7
3

7
7

5
3

7
6

9
7

8
5

8
0

1
8

1
7

8
3

3
8

4
9

8
6

5
8

8
1

8
9

7
9

1
3

9
2

9

150-200 bits = Entropy lowest limit

Generate
128bits SSL key

Generate
1024bits SSL key

24th October 2014, Bucureşti, România 17

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1
2

7
5

3
7

9
1

0
5

1
3

1
1

5
7

1
8

3
2

0
9

2
3

5
2

6
1

2
8

7
3

1
3

3
3

9
3

6
5

3
9

1
4

1
7

4
4

3
4

6
9

4
9

5
5

2
1

5
4

7
5

7
3

5
9

9
6

2
5

6
5

1
6

7
7

7
0

3
7

2
9

7
5

5
7

8
1

8
0

7
8

3
3

8
5

9
8

8
5

9
1

1
9

3
7

9
6

3
9

8
9

1
0

1
5

1
0

4
1

1
0

6
7

1
0

9
3

1
1

1
9

1
1

4
5

1
1

7
1

1
1

9
7

1
2

2
3

1
2

4
9

1
2

7
5

1
3

0
1

1
3

2
7

1
3

5
3

1
3

7
9

1
4

0
5

1
4

3
1

1
4

5
7

1
4

8
3

1
5

0
9

Haveged Running Haveged Running

Haveged Stopped

Under linux every process uses entropy and every server
“should” not have less than 200 bits. It Is possible to
increase the entropy level using entropy deamons like the
package “haveged”. (http://www.issihosts.com/haveged/)

http://www.issihosts.com/haveged/

• PYTHON for networking?

• PYTHON for fuzzing?

24th October 2014, Bucureşti, România 18

Scapy libdnet dpkt Impacket

pypcap pynids Dirtbagspy-pcap flowgrep

Mallory Pytbull 0trace

Sulley Peach Fuzzing antiparser TAOF

untidy Powerfuzzer Mistress Fuzzbox

WSBang Construct Fusil SMUDGE

• OWASP Secure Coding Principles

24th October 2014, Bucureşti, România 19

1. Minimize attack surface area

2. Establish secure defaults

3. Principle of Least privilege

4. Principle of Defence in depth

5. Fail securely

6. Don’t trust services

7. Separation of duties

8. Avoid security by obscurity

9. Keep security simple

10. Fix security issues correctly

• In reality “Secure coding” is a PRACTICE

Practice: “the actual application or use of an idea,
belief, or method, as opposed to theories relating to it”

The definition of “secure coding” changes over time as
each person/company has different ideas.

• Is about how to DESIGN code to be inherently
secure and NOT on how to write secure code

24th October 2014, Bucureşti, România 20

• As a PRACTICE secure coding includes but is
not limited to:

Definition of areas of interest

Analysis of architectures involved

Review of implementation details

Verification of code logic and syntax

Operational testing (unit testing, white-box)

Functional testing (black-box)

24th October 2014, Bucureşti, România 21

• Secure coding depends on “functional testing”

– Functional testing: “verifies a program by checking it
against ... design document(s) or specification(s)”

– System testing: “validate[s] a program by checking it
against the published user or system requirements”

(Kaner, Falk, Nguyen. Testing Computer Software. Wiley Computer Publishing, 1999)

• Operational testing = white-box testing  unit-test
– (http://en.wikipedia.org/wiki/Operational_acceptance_testing)

• Functional testing = black-box testing
– (http://en.wikipedia.org/wiki/Functional_testing)

24th October 2014, Bucureşti, România 22

http://en.wikipedia.org/wiki/Operational_acceptance_testing
http://en.wikipedia.org/wiki/Functional_testing

• PYTHON  use with moderation

We have seen some powerful tools written in python but what
about the security of python itself?

• Are there operations to avoid?

• Any module or core library to use with caution?

• Something to know before writing code for security?

24th October 2014, Bucureşti, România 23

• EXAMPLE – numeric overflow

24th October 2014, Bucureşti, România 24

N = 2 ** 63
for n in xrange(N):

print n

RESULT (debian 7 x64)
Traceback (most recent call last):
File "xrange_overflow.py", line 5, in <module>
for n in xrange(N):

OverflowError: Python int too large to convert
to C long

PROBLEM: xrange uses "Plain Integer Objects" created by the OS
SOLUTION: Use python "long integer object“ that will allow
numbers of arbitrary length as the limit will be the system's
memory.

24th October 2014, Bucureşti, România 25

import sys
import io

fd = io.open(sys.stdout.fileno(), 'wb')
fd.close()

try:
sys.stdout.write("test for error")

except Exception:
raise

• EXAMPLE – operations with file descriptors
RESULT
close failed in file object destructor:
sys.excepthook is missing
lost sys.stderr

Code is trying to write a non-zero
amount of data to something that
does not exists.
The file descriptor has been closed
and nothing can be sent, but python
has no control over it and returns a
system error.

24th October 2014, Bucureşti, România 26

C:\Python27>python.exe -V
Python 2.7.6

python.exe -OOBtt “winfd_1.py”

• EXAMPLE - File descriptors in Windows

import io
import sys

fd = io.open(sys.stdout.fileno(), 'wb')
fd.close()

sys.stdout.write(“Now writing to stdout closed FD will cause a crash")

24th October 2014, Bucureşti, România 27

• EXAMPLE – string evaluation

import sys
import os
try:

eval("__import__('os').system('clear')", {})
#eval("__import__('os').system(cls')", {})
print "Module OS loaded by eval"

except Exception as e:
print repr(e)

The function "eval" executes a string but is not possible to any
control to the operation. Malicious code is executed without limits
in the context of the user that loaded the interpreter.

REALLY DANGEROUS

24th October 2014, Bucureşti, România 28

• EXAMPLE – input evaluation
Secret = "A SECRET DATA"
Public = "a COCONUT"
value = input("Please enter your age ")
print "There are",value,
print "monkeys looking for",Public

python -OOBRtt input_1.py
Please enter your age 32
There are 32 monkeys looking for a COCONUT

python -OOBRtt input_1.py
Please enter your age dir()
There are ['Public', 'Secret', '__builtins__', '__doc__', '__file__', '__name__', '__package__'] monkeys
looking for a COCONUT

python -OOBRtt input_1.py
Please enter your age Secret
There are A SECRET DATA monkeys looking for a COCONUT

What you type as input is interpreted
through an expression and the
result is saved into your target

variable with no control or limits.

The dir() function returns “most”
of the attributes of an object.

• Unicode string encode/decode

24th October 2014, Bucureşti, România 29

RESULT

Correct-String "u'A\\ufffdBC\\ufffd'"  KNOWN GOOD STRING
CODECS-String "u'A\\ufffdBC'" WRONG
IO-String "u'A\\ufffdBC\\ufffd'"  OK

The problem is due to a bug in the "codec" library that detects the character
"F4" and assumes this is the first character of a sequence of characters and wait
to receive the remaining 3 bytes, and the resulting string is truncated.

A better and safer approach would be to read the entire stream and only then
proceed to the decoding phase, as done by the ”io” module.

• CODE – Unicode string encode/decode

24th October 2014, Bucureşti, România 30

import codecs
import io
try:

ascii
except NameError:

ascii = repr
b = b'\x41\xF5\x42\x43\xF4'
print("Correct-String %r") % ((ascii(b.decode('utf8', 'replace'))))
with open('temp.bin', 'wb') as fout:

fout.write(b)
with codecs.open('temp.bin', encoding='utf8', errors='replace') as fin:  ISSUE HERE

print("CODECS-String %r") % (ascii(fin.read()))
with io.open('temp.bin', 'rt', encoding='utf8', errors='replace') as fin:

print("IO-String %r") % (ascii(fin.read()))

• EXAMPLE – data corruption with “cPickle”

24th October 2014, Bucureşti, România 31

import os
import cPickle
import traceback
random_string = os.urandom(int(2147483648))
print ("STRING-LENGTH-1=%r") % (len(random_string))
fout = open('test.pickle', 'wb')
try:

cPickle.dump(random_string, fout)
except Exception as e:

print "###### ERROR-WRITE ######"
print sys.exc_info()[0]
raise

fout.close()
fin = open('test.pickle', 'rb')
try:

random_string2 = cPickle.load(fin)
except Exception as e:

print "###### ERROR-READ ######"
print sys.exc_info()[0]
raise

print ("STRING-LENGTH-2=%r") % (len(random_string2))
print random_string == random_string2

pickle/CPICKLE (debian 7 x64)
LIMIT = 2147483648 -1 = 2147483647

(32bit integer object)
TEST WITH STRING SIZE "2147483647"

ALL OK

TEST using cPickle (data corruption)
TEST WITH STRING SIZE "2147483648"
ERROR-WRITE
<type 'exceptions.SystemError'>
....
File "pickle_2.py", line 18, in <module>

pickle.dump(random_string, fout)
SystemError: error return without exception set

• EXAMPLE – data corruption with “pickle”

24th October 2014, Bucureşti, România 32

import os
import pickle
import traceback
random_string = os.urandom(int(2147483648))
print ("STRING-LENGTH-1=%r") % (len(random_string))
fout = open('test.pickle', 'wb')
try:

pickle.dump(random_string, fout)
except Exception as e:

print "###### ERROR-WRITE ######"
print sys.exc_info()[0]
raise

fout.close()
fin = open('test.pickle', 'rb')
try:

random_string2 = pickle.load(fin)
except Exception as e:

print "###### ERROR-READ ######"
print sys.exc_info()[0]
raise

print ("STRING-LENGTH-2=%r") % (len(random_string2))
print random_string == random_string2

pickle/CPICKLE (debian 7 x64)
LIMIT = 2147483648 -1 = 2147483647

(32bit integer object)
TEST WITH STRING SIZE "2147483647"

ALL OK

TEST using pickle (data corruption)
TEST WITH STRING SIZE "2147483648"
ERROR-WRITE
<type 'exceptions.MemoryError'>
….
File "/usr/lib/python2.7/pickle.py", line 488, in
save_string self.write(STRING + repr(obj) + '\n')
MemoryError

• EXAMPLE – unrestricted code in “pickle”

24th October 2014, Bucureşti, România 33

import pickle
obj = pickle.load(open('./bug.pickle'))
print "== Object =="
print repr(obj)

bug.pickle
cos
system
(S'ls -al /'
tR.

drwxr-xr-x 24 root root 4096 Feb 28 01:42 .
drwxr-xr-x 24 root root 4096 Feb 28 01:42 ..
drwxr-xr-x 2 root root 4096 Feb 28 01:14 bin
drwxr-xr-x 158 root root 12288 Apr 30 22:16 etc
drwxr-xr-x 3 root root 4096 Feb 28 00:45 home
drwx------ 2 root root 16384 Feb 27 23:25 lost+found
drwxr-xr-x 3 root root 4096 May 2 09:18 media
drwxr-xr-x 2 root root 4096 Dec 4 12:31 mnt
drwxr-xr-x 2 root root 4096 Feb 27 23:26 opt
dr-xr-xr-x 316 root root 0 Apr 16 12:21 proc
drwx------ 7 root root 4096 Mar 7 23:09 root
drwxr-xr-x 2 root root 4096 Feb 28 01:55 sbin
drwxr-xr-x 2 root root 4096 Feb 27 23:26 srv
drwxr-xr-x 13 root root 0 Apr 16 12:21 sys
drwxrwxrwt 13 root root 4096 May 2 14:57 tmp
drwxr-xr-x 10 root root 4096 Feb 27 23:26 usr
drwxr-xr-x 13 root root 4096 Feb 28 07:21 var

WARNING: pickle or cPickle are NOT designed as
safe/secure solution for serialization

• EXAMPLE – inconsistent “pickle” serialization

24th October 2014, Bucureşti, România 34

python 3
import pickle
import collections
dct = collections.defaultdict()
f = pickle.dumps(dct, protocol=1)
print (repr(f))
g = pickle.dumps(dct, protocol=1,
fix_imports=False)
print (repr(g))
h = pickle.dumps(dct, protocol=2)
print (repr(h))
i = pickle.dumps(dct, protocol=2,
fix_imports=False)
print (repr(i))

RESULT
b'cUserList\ndefaultdict\nq\x00)Rq\x01.'
b'ccollections\ndefaultdict\nq\x00)Rq\x01.'
b'\x80\x02cUserList\ndefaultdict\nq\x00)Rq\x01.'
b'\x80\x02ccollections\ndefaultdict\nq\x00)Rq\x01.‘

(http://hg.python.org/cpython/file/7272ef213b7c/Li
b/_compat_pickle.py at line 80)

If there's a “collections.defaultdict” in the pickle
dump, python 3 pickles it to “UserString.defaultdict”
instead of “collections.defaultdict” even if python
2.7 and 2.6 do not have a “defaultdict” class in
“UserString”.

http://hg.python.org/cpython/file/7272ef213b7c/Lib/_compat_pickle.py

• EXAMPLE – review of pickle/cPickle

– Main problems: code injection, data corruption

• cPickle: severe errors as exceptions are "lost" even if
an error is generated and signalled by the O.S.

• pickle: no controls on data/object integrity

• pickle: no control on data size or system limitations

• pickle: code evaluated without security controls

• pickle: string encoded/decoded without verification

24th October 2014, Bucureşti, România 35

24th October 2014, Bucureşti, România 36

• EXAMPLE – socket remains open after error ..
OPEN IN TERMINAL 1 (one line):
python -m smtpd -n -c DebuggingServer
localhost:45678

OPEN IN TERMINAL 2:
python -OOBRtt smtplib_1.py

RESULT:
ssl.SSLError: [Errno 1] _ssl.c:504: error:140770FC:SSL
routines:SSL23_GET_SERVER_HELLO:unknown protocol

lsof -P | grep python | grep ":45678"
python 16725 user01 3u IPv4 31510356 0t0 TCP localhost:45678 (LISTEN)

The underlying socket connection remains open, but you can't access it or close it.

import smtplib
try:

s = smtplib.SMTP_SSL("localhost", 45678)
except Exception:

raise

smtplib_1.py

• EXAMPLE – “unlimited data” in POP3

24th October 2014, Bucureşti, România 37

import poplib
HOST = '127.0.0.1'
PORT = 45678
try:

print "Connecting to %r:%d..." % (HOST, PORT)
pop = poplib.POP3(HOST, PORT)
print "Welcome:", repr(pop.welcome)
print "Listing..."
reply = pop.list()
print "LIST:", repr(reply)

except Exception, ex:
print "Error: %r" % str(ex)

print "End."

import socket
HOST = '127.0.0.1'
PORT = 45678
NULLS = '\0' * (1024 * 1024) # 1 MB
sock = socket.socket()
sock.bind((HOST, PORT))
sock.listen(1)
while 1:
conn, _ = sock.accept()
conn.sendall("+OK THIS IS A TEST\r\n")

conn.recv(4096)
DATA = NULLS
try:

while 1:
for _ in xrange(1024):

conn.sendall(DATA)
except IOError, ex:

print "Error: %r" % str(ex)

CLIENT

SERVERpython -OOBRtt pop3_client.py
Connecting to '127.0.0.1':45678...
Welcome: '+OK THIS IS A TEST'
Error: 'out of memory‘

• EXAMPLE – leaks in poplib/urllib/smtplib …

24th October 2014, Bucureşti, România 38

python -OOBRtt pop3_server.py
Traceback (most recent call last):

File "pop3_server.py", line 12, in <module>
sock.bind((HOST, PORT))

File "/usr/lib/python2.7/socket.py", line 224, in meth
return getattr(self._sock,name)(*args)

socket.error: [Errno 98] Address already in use

ps aux | grep pop3
user01 30574 0.0 0.0 33256 6052 ? S 19:34 0:00 /usr/bin/python –OOBRtt pop3_server.py

lsof -P | grep python | grep pop3
pop3_serv 30574 user01 txt /usr/bin/python2.7
pop3_serv 30574 user01 mem REG /usr/lib/python2.7/lib-dynload/_ssl.so

If python process has an error
the exception will not reliably

close all file and socket file
descriptors (handles) leading to

leaks and uncontrollable
background processes

• EXAMPLE – libs with “unlimited data“ issues

HTTPLIB  http://bugs.python.org/issue16037 (fixed)

FTPLIB  http://bugs.python.org/issue16038 (fixed)

IMAPLIB  http://bugs.python.org/issue16039 (fixed)

NNTPLIB  http://bugs.python.org/issue16040 (fixed)

POPLIB  http://bugs.python.org/issue16041

SMTPLIB  http://bugs.python.org/issue16042

XMLRPC  http://bugs.python.org/issue16043

24th October 2014, Bucureşti, România 39

http://bugs.python.org/issue16037
http://bugs.python.org/issue16038
http://bugs.python.org/issue16039
http://bugs.python.org/issue16040
http://bugs.python.org/issue16041
http://bugs.python.org/issue16042
http://bugs.python.org/issue16043

• Small list of KNOWN UNSAFE python components

24th October 2014, Bucureşti, România 40

ast
bastion

commands
cookie
cPickle

eval
marshal
mktemp

pty
rexec

shelve
subprocess

tarfile
yaml

zipfile

multiprocessing
os.exec

os.popen
os.spawn
os.system

parser
pickle
pipes

• PYTHON for the web?

• PYTHON for offensive actions?

Plenty of dangerous python tools in “packet storm security” website:

• http://packetstormsecurity.com/files/tags/python/

More general tools:

• http://pythonsource.com/

24th October 2014, Bucureşti, România 41

Requests HTTPie ProxMon WSMap

Twill Ghost Windmill FunkLoad

spynner mitmproxy pathod/ pathoc scrapy

http://packetstormsecurity.com/files/tags/python/
http://pythonsource.com/

• PYTHON for reverse engineering?

24th October 2014, Bucureşti, România 42

Androguard IDAPython pyasm2 pype32

apkjet libdisassemble PyBFD python-adb

AsmJit-Python llvmpy PyCodin python-ptrace

BeaEnginePython Miasm pydasm PythonGdb

Binwalk ollydbg2-python PyDBG PyVEX

Buggery OllyPython pydbgr pywindbg

cuckoo PDBparse PyELF Rekall

Disass pefile pyew Vivisect

ElfParserLib PIDA pygdb2 Volatility

Frida PyADB pyMem WinAppDbg

• Closing Summary

• Python is a powerfuland easy to learn
language BUT has to be used with care.

• There are no limits or controls in the language,
is responsibility of the coder to know what can
be done and what to avoid.

24th October 2014, Bucureşti, România 43

24th October 2014, Bucureşti, România 44

Access class to Monitor
Local network

Local access only
Remote Network Access

Server Issues
Misconfiguration

Application headers
Application Errors

Default files
Default Locations
Traffic in clear text
Vulnerable to DoS

Vulnerable to MITM

Crypto Issues
Weak ciphers

Small keys
Invalid SSL certs

Vulnerabilities to Check
Format String
Buffer Errors

Credentials Management
Cryptographic Issues

Information Leak
Input Validation

OS Command Injections
SQL Injection

Architectural Aspects
Kernel Architecture

Data write policy
NIC configuration

Entropy pool

Language Issues
File operations

Object evaluations
Instruction Validation
Variable Manipulation
String/Input Evaluation

Unicode encode/decode
Serialization
Data limits

Secure Coding Review

24th October 2014, Bucureşti, România 45

Contact
Enrico Branca

Email: enrico.branca@owasp.org

Linkedin: http://fr.linkedin.com/in/ebranca

“OWASP Python Security Project”
http://www.pythonsecurity.org/

mailto:enrico.branca@owasp.org
http://fr.linkedin.com/in/ebranca
http://www.pythonsecurity.org/

