

Risk Modeling for Vulnerabilities

OWASP

Rishi Pande

Copyright © The OWASP Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation http://www.owasp.org

Overview

- What is Risk Modeling?
- Why Risk Modeling?
- Overview of various risk models
- CVSS
- Operationalizing a risk model
- Takeaways

Caveats/Warnings

- This is an Information Security Process Presentation not a technical presentation (but I really hope you understand some technology)
- Risk modeling in this presentation refers to application security vulnerability risk modeling
- Any views or opinions presented are solely those of the author and do not necessarily represent those of my employers
- I/ We are not responsible for the consequences of any actions taken on the basis of the information provided

What is Risk Modeling?

- Answers the question: "What is the risk of a particular vulnerability to your organization?"
- Assumes that your organization has already discovered the vulnerability in the application

What is Risk Modeling?

■ How does Appscan know "Parameter Value Overflow" is a high risk issue?

Why Risk Modeling?

- Allows organizations to determine risk level arising from a particular vulnerability to the organization, based on its own criteria
- Provides organizations with a ranked list of vulnerabilities to determine correct controls and produce effective countermeasures
- Provides a structured thinking methodology for rating application vulnerabilities to development, audit / assurance, and business
- Allows for translation of vulnerabilities to business risk

What you need to know

- Vulnerability
- Application usage in business context
- Application architecture and data flow
- Application's Information Security requirements
- The threat vector (type of attacker) you are defending against:
 - Curious Attacker
 - Script Kiddies
 - Motivated Attacker
 - Organized Crime

Overview of different risk models

- I. OH-SHIT
- II. STAR
- III. STRIDE
- IV. DREAD
- V. OWASP
- VI. CVSS

I. OH- SHIT model

- AKA "we need a model" model
- AKA "everything is a high" model
- AKA "security auditors know best" model
- Business input tends to be ignored
- No prioritization of risks
- Highly dependent on the background of the individuals involved in the rating of the risk

II. STAR model

- Security Targeting and Analysis of Risks
- Analyzes processes instead of vulnerabilities or systems
- Asks a series of questions arising from a particular vulnerability to determine needed controls
- Builds a matrix of process controls and system severity based on stakeholder input
- May lead to high operational overhead
- Pioneered by Virginia Tech in 2002
- Popular in Educational Institutions

III. STRIDE - Overview

- Classification scheme for vulnerabilities in the following categories:
 - Spoofing Identity
 - Tampering Data
 - Repudiation
 - Information disclosure
 - Denial of Service
 - <u>Elevation of Privilege</u>
- Optimal Usage in software development
- Decomposes system into components based on data flow diagrams
- Analyzes individual components for susceptibility to threats
- Controls added, components reanalyzed

III. STRIDE - Considerations

- No rating scheme for vulnerabilities identified
- Process could go into endless loop
- System integration could result in new (or unforeseen) vulnerabilities that were not identified earlier
- One vulnerability could be placed in different classifications, e.g., XSS could be placed in almost every category

IV. DREAD - Overview

■ <u>Damage Potential</u>

If a threat exploit occurs, how much damage will be caused?

■ Reproducibility

O How easy is it to reproduce the threat exploit?

■ Exploitability

What is needed to exploit this threat?

■ <u>A</u>ffected Users

How many users will be affected?

■ <u>D</u>iscoverability

How easy is it to discover this threat?

■ Risk_DREAD = (DAMAGE + REPRODUCIBILITY + EXPLOITABILITY + AFFECTED USERS + DISCOVERABILITY) / 5

IV. DREAD – Pros & Cons

- Each vector has a numerical value between 1 to 10 assigned to it, depending on severity
- Damage potential value:
- \circ 0 = Nothing
- 5 = Individual user data is compromised or affected.
- 10 = Complete system or data destruction
- Final output is quantitative, which can be used to prioritize the risks to be addressed
- Quantitative values too wide: difficult to differentiate between a 7 and 8 for damage potential
- "Neither of them (STRIDE or DREAD) were developed with any real academic rigor, and from a scientific standpoint, neither of them tend to hold up very well" David LeBlanc

V. OWASP- Overview

- Risk = Likelihood * Impact
- Individual calculations for the severity of Likelihood and Impact are combined
- Likelihood is measured by:
 - ▶ Threat Agent factors
 - Vulnerability factors

Threat agent factors				Vulnerability factors				
Skill level	Motive	Opportunity	Size		Ease of discovery	Ease of exploit	Awareness	Intrusion detection
5	2	7	1		3	6	9	2
Overall likelihood=4.375 (MEDIUM)								

- Impact is measured by:
 - ▶ Technical Impact
 - ▶ Business Impact

Technical Impact			Business Impact				
Loss of confidentiality	Loss of integrity	Loss of availability	Loss of accountability	Financial damage	Reputation damage	Non-compliance	Privacy violation
9	7	5	8	1	2	1	5
Overall technical impact=7.25 (HIGH)			Overall business impact=2.25 (LOW)				

V. OWASP- Calculations

■ The following scale is used to measure likelihood and impact levels:

▶ 0 to < 3 Low

▶ 3 to < 6 Medium

▶ 6 to 9 High

■ The following matrix is then used to calculate the risk:

Overall Risk Severity						
	HIGH	Medium	High	Critical		
Immost	MEDIUM	Low	Medium	High		
Impact	LOW	Note	Low	Medium		
		LOW	MEDIUM	HIGH		
	Likelihood					

V. OWASP – Pros & Cons

- Takes reputational impact, repudiation, and privacy violations into account
- Does not give a quantitative overall risk score
- Impact and likelihood vector ranges too wide 0-9
- All factors have the same weight

CVSS - Overview

- Common Vulnerability Scoring System
- Commissioned by NIAC / Maintained by FIRST
- Quickly becoming the *standard* for application vulnerability risk modeling
- Provides a score as well as equation that quickly tells the reader how the score was determined:
 - CVSS2:5.9(AV:L/AC:L/Au:S/C:C/I:C/A:N/E:H/RL:OF/ RC:C/CDP:ND/TD:ND/CR:H/IR:H/AR:H)

CVSS – Metric Groups

■ CVSS is composed of three metric groups: Base, Temporal, and Environmental, each consisting of a set of metrics

Base: represents the intrinsic and fundamental characteristics of a vulnerability that are constant over time and user environments.

Temporal: represents the characteristics of a vulnerability that change over time but not among user environments.

Environmental: represents the characteristics of a vulnerability that are relevant and unique to a particular user's environment.

CVSS – Group Interaction

How do the three groups interact?

If you are unable to calculate metrics for one particular group, the model will assume default values to determine the overall calculation

Base Metrics – Access Vector

- Access Vector defines the location from which a vulnerability can be exploited.
- The more remote the location, the greater its impact on the score.

Metric Value	Description
Local (L)	A vulnerability exploitable with only <i>local access</i> requires the attacker to have either physical access to the vulnerable system or a local (shell) account.
Adjacent Network (A)	A vulnerability exploitable with <i>adjacent network access</i> requires the attacker to have access to either the broadcast or collision domain of the vulnerable software.
Network (N)	A vulnerability exploitable with <i>network access</i> means the vulnerable software is bound to the network stack and the attacker does not require local network access or local access. Such a vulnerability is often termed "remotely exploitable".

Base Score - Calculations

- BaseScore =round_to_1_decimal(((0.6*Impact) + (0.4*Exploitability)-1.5)*f(Impact))
 - ▶ Impact =
 - 10.41*(1-(1-ConfImpact)*(1-IntegImpact)*(1-AvailImpact))
 - Exploitability =
 - 20* AccessVector*AccessComplexity*Authentication
 - ▶ f(impact)=
 - 0 if Impact=0, 1.176 otherwise

CVSS - Overall Score

■ TemporalScore =

Round_to_1_decimal (BaseScore*Exploitability *RemediationLevel*ReportConfidence)

■ EnvironmentalScore =

Round_to_1_decimal((AdjustedTemporal + (10-Adjusted Temporal)*CollateralDamagePotential)*TargetDistribution)

CVSS - Calculator

CVSS - Conclusions

- Calculators provided by NIST
- Provides a score between 0 and 10. NIST standard proposes to use the following rating scheme:
 - Low 0.0 3.9 ■ Medium 4.0 – 6.9
 - High 7.0 10.0
- Used by several agencies and vendors to report their findings:
 - National Vulnerability Database (NVD)
 - ▶ Cisco, Qualys, ISS publish vulnerabilities with CVSS scores
- Supported by Vulnerability Scanning tools such as Appscan, WebInspect, etc. (as of 2009)
- Organizations should adapt vectors to application specific scenarios

Operationalizing a Risk Models

- Determine business environment
- Determine available input variables
- Allow stakeholders to provide data to different parts of the model where they possess domain knowledge
- Security auditors --> CIA *compromise* of the vulnerability
- Business --> CIA requirement for the application

Takeaways

- Having <u>any</u> quantitative repeatable risk model is better than none at all
- Consider and understand the operational requirements for each model prior to final selection
- Adapt the chosen model to meet your company's needs prior to implementation (avoid scope creep)
- Ensure that all stakeholders understand the chosen risk model and their roles in providing input
- CVSS has proven to be the most popularly used risk model because it's of its NIST standard, quantitativeness, relative ease of comprehension, and repeatability

