

The OWASP Foundation http://www.owasp.org

Security Testing Guidelines for mobile Apps

Florian Stahl Johannes Ströher

AppSec Research EU 2013

Who we are

Florian Stahl

- Lead Consultant for Information Security, CISSP, CIPP/IT
- Security & Privacy advocate
- Works in Munich for msg systems ag, Germany's 5th largest IT consulting and system development company
- Florian.Stahl@msg-systems.com

Johannes Ströher

- Consultant for Information Security
- Expert for Mobile App Testing
- Developed the Mobile Security Testing Guide in his Master's Thesis
- Johannes.Stroeher@msg.de

Agenda

1. Motivation for Mobile Security Testing Guidelines

- Current mobile threat landscape and current situation
- Challenges

2. Mobile Security Testing Guide (MSTG)

- Overview
- Intelligence Gathering, Threat Modeling & Vulnerability Analysis in specific
- Tools and examples
- 3. Summary

Mobile App Threat Landscape

- Location-independent (mobile)
- "Always online" and traceable
- Consumerization devices are built for personal use
- Focus on functionality and design rather than security
- Raise of sensitive use cases for mobile apps
- 163% increase of mobile malware in 2012 *
- "Hidden" business cases for free apps

Situation Mobile Security Testing

- Mobile apps have some specific characteristics regarding penetration testing
- Custom guidelines have not been available
- msg systems decided to develop guidelines (MSTG) with Munich University of Applied Sciences
- Similar guidelines published by OWASP: <u>OWASP Mobile Security Testing</u>

Challenges

- Identify differences to common penetration tests
- Flexible Preconditions
 - App Security also depends on device security (jailbreak, different platforms, versions, interfaces, MDM, etc.)
 - Different attackers (internal, external, network or device access, blackbox / whitebox, etc.)
- Keep it flexible AND give specific hints to the penetration tester
- Result: General process (mandatory) and supporting tools and practices (optional)

Mobile Security Testing Guide Overview

- The specific sub-processes were elaborated in detail for Android and iOS
- An iOS native CRM app is used for illustration because ...
 - The CRM app supports many testable functions (authentication, ...)
 - It is open source → more possibilities to demonstrate static methods
 - It is a native app \rightarrow provides more attack surface for the tester
 - We can install the relating CRM service on an own server → no need for taking care of impacts during the tests
- The CRM App was tested on an iPhone 4 with iOS 6

Intelligence Gathering

- Try to catch as much as possible information about the app
- Consists of 2 analysis

- Differences to conventional process
 - Focus mainly on the architectural/technical part
 - Not considering mobile specific requirements

Intelligence Gathering

- Environmental Analysis
 - Focus on the company behind the app and their business case and the relating stakeholders
 - Analyze internal processes and structures
- Architectural Analysis
 - App (network interfaces, used data, communication with other ressources, session management, jailbreak/rooting detection, ...)
 - Runtime environment (MDM, jailbreak/rooting, os version)
 - Backend services (application server, databases, firewall, ...)

Intelligence Gathering - Example

- Examples for collected information from the Architectural Analysis for the CRM app
 - App
 - User session remains until the user logs off manually
 - No financial transactions are included
 - Runs on a jailbroken device \rightarrow no jailbreak detection
 - Provides operations on server side CRM data for creating, reading, updating, deleting contacts, cases, calls, ...
 - Runtime environment analysis is not relevant, because the app is running on a device from the tester
 - Backend services
 - Details about the version of the running CRM service

Threat Modeling

- Identifying threats for the app specific or prepared threats (e.g. OWASP Top 10)
 - Should be done already in the development
- Risk rating e. g. with OWASP Risk Rating
- Developing countermeasures e. g. with best practices or developers guides
- Differences to conventional process
 - Most software testing processes do not include Threat Modeling
 - Threat Modeling makes the complete process more traceable and efficient for all participants

Threat Modeling - Example

- Threat Modeling process example for the CRM App
 - Information from the Intelligence Gathering
 - App provides operations on CRM data on server side
 - Specific threat
 - Unauthorized reading of CRM data on the network traffic while communicating with the CRM backend
 - Relating countermeasure
 - Implementing a secure transport layer protection (e. g. SSL, TLS)
 - Relating test case
 - Try to catch and read the network traffic between the CRM App and the backend

- Identifying vulnerabilities in the app with the previous created test cases
- Executing test cases with techniques from 3 different categories

- Differences to conventional process
 - Most software testing processes not include so many categories of testing methods

- Static methods
 - Reverse Engineering
 - Automatic and manual source code analysis

- Excursion: Tools for static methods
 - Reverse Engineering
 - Android: dex2jar, JD-GUI
 - iOS: otool, class-dump-z

- Automatic and manual source code analysis
 - Android: Androwarn, Andrubis, ApkAnalyser
 - iOS: Flawfinder, Clang Static Analyzer

- Dynamic methods
 - Passive network monitoring and analyzing
 - Network traffic analysis at different places in the network (at the device, gateway or in an own VPN)
 - Active network capturing and manipulating (Wifi and cellular)
 - Problems
 - Native apps do not use always device proxy settings
 - SSL encrypted connections
 - Solutions
 - Special apps that force the usage of device proxy settings or which break SSL encrypted connections (mostly for jailbroken or rooted devices)

- Dynamic methods
 - Runtime analysis
 - Possible by analyzing the communicating process for internal components (Android: Intents; iOS: objc_msgSend calls)
 - Runtime manipulation
 - Call or manipulate specific functions
 - Read and write variable values
 - File activity analysis
 - Analysis file system changes during the runtime

- Dynamic methods CRM app example
 - Network traffic analysis reveals usage of HTTP and sending non-encrypted sensitive user data (session id, username and password)
 - Tools: Wireshark, BurpSuite, ...
 - User authentication can be bypassed by runtime manipulation
 - iOS tools: GNU debugger, Snoop-it, Cycript, ...
 - Android tools: Mercury, Intent Sniffer, Intent Fuzzer, ...
 - File activity analysis shows that user credentials (username and password) are stored in and used from the iOS keychain
 - iOS tools: filemon.iOS, Snoop-it
 - Android tools: androidAuditTools

- Forensic methods
 - Timeline analysis
 - Analyze timestamps created from the file system
 - Analysis of different file types
 - SQLite databases
 - Log files
 - Cookies

- Screenshots (iOS)
- Keyboard cache (iOS)
- SharedPreferences (Android)
- Keychain (iOS)

- Forensic methods CRM app example
 - Timeline analysis shows that the app updates several files during its runtime (*.plist file, database)
 - Tools: mac-robber, mactime
 - Analyzing identified files and standard file types reveal that the user credentials are stored in plain text in the iOS keychain
 - Tools: Keychain dumper, keychain viewer, ...

Summary

Mobile Security Testing Guide ...

- … considers mobile characteristics, but is independent from technologies
- ... helps to improve transparency and repeatability for mobile penetration testing
- ... is a holistic approach with sufficient flexibility

... and ultimately helps to improve mobile app security

The OWASP Foundation

http://www.owasp.org

Thank you for your attention!

infosec@msg-systems.com

Full thesis (in German) available on request