
OWASP Top 10 for LLM
2 0 2 3

https://owasp.org/www-project-top-10-for-large-language-model-applications/


This manipulates a large language 
model (LLM) through crafty inputs, 
causing unintended actions by the LLM. 
Direct injections overwrite system 
prompts, while indirect ones manipulate 
inputs from external sources.

Prompt Injection

LLM01

LLM’s may inadvertently reveal 
confidential data in its responses, 
leading to unauthorized data access, 
privacy violations, and security 
breaches. Implement data sanitization 
and strict user policies to mitigate this.

Sensitive Information 
Disclosure

LLM06

LLM plugins can have insecure inputs 
and insufficient access control due to 
lack of application control. Attackers 
can exploit these vulnerabilities, 
resulting in severe consequences like 
remote code execution.

Insecure Plugin

Design

LLM07

This vulnerability occurs when an LLM 
output is accepted without scrutiny, 
exposing backend systems. Misuse 
may lead to severe consequences like 
XSS, CSRF, SSRF, privilege escalation, or 
remote code execution.

Insecure Output

Handling

LLM02

LLM-based systems may undertake 
actions leading to unintended 
consequences. The issue arises from 
excessive functionality, permissions, or 
autonomy granted to the LLM-based 
systems.

Excessive Agency

LLM08

This occurs when LLM training data is 
tampered, introducing vulnerabilities or 
biases that compromise security, 
effectiveness, or ethical behavior. 
Sources include Common Crawl, 
WebText, OpenWebText, & books.

Training Data

Poisoning

LLM03

Systems or people overly depending on 
LLMs without oversight may face 
misinformation, miscommunication, 
legal issues, and security vulnerabilities 
due to incorrect or inappropriate content 
generated by LLMs.

Overreliance

LLM09

Attackers cause resource-heavy 
operations on LLMs, leading to service 
degradation or high costs. The 
vulnerability is magnified due to the 
resource-intensive nature of LLMs and 
unpredictability of user inputs.

Model Denial of 

Service

LLM04

This involves unauthorized access, 
copying, or exfiltration of proprietary 
LLM models. The impact includes 
economic losses, compromised 
competitive advantage, and potential 
access to sensitive information.

Model Theft

LLM10

LLM application lifecycle can be 
compromised by vulnerable 
components or services, leading to 
security attacks. Using third-party 
datasets, pre- trained models, and 
plugins add vulnerabilities.

Supply Chain 
Vulnerabilities

LLM05

OWASP Top 10 for LLM|

OWASP Top 10 for LLM



OWASP Top 10 for LLM|

Prompt Injection allows attackers to 
manipulate Large Language Models 
(LLMs) through crafted inputs, leading to 
potential backend system exploitation or 
user interaction manipulation.

EXAMPLES

�� Attackers instruct LLM to return private information�
�� Hidden prompt injection in a webpage solicits sensitive information�
�� A document with a prompt injection manipulates LLM's output�
�� Rogue instruction on a website exploits a plugin, causing unauthorized 

actions.

PREVENTION

�� Restrict LLM's access to necessary operations�
�� Require user approval for privileged operations�
�� Limit untrusted content's influence on user prompts�
�� Establish trust boundaries and maintain user control.

ATTACK SCENARIOS

�� Adversarial prompt injection on a website causes unauthorized actions�
�� Hidden prompt injection in a resume manipulates LLM's output�
�� Direct prompt injection allows malicious user control over the LLM.

Prompt Injection

LLM01



Insecure Output Handling vulnerability 
occurs when a plugin or application 
accepts LLM output without scrutiny and 
passes it to backend or client-side 
functions. This can lead to XSS, CSRF, 
SSRF, privilege escalation, or remote code 
execution.

EXAMPLES

�� LLM output directly entered into a backend function, causing remote 
code execution�

�� JavaScript or Markdown generated by the LLM is interpreted by the 
browser, resulting in XSS.

PREVENTION

�� Apply input validation on responses from the model to backend functions�
�� Encode output from the model back to users to mitigate undesired code 

interpretations.

ATTACK SCENARIOS

�� Application passes LLM-generated response into an internal function 
without validation, leading to unauthorized access or modifications�

�� A website summarizer tool powered by an LLM captures sensitive content 
and sends it to an attacker-controlled server�

�� An LLM allows users to craft SQL queries for a backend database without 
scrutiny, leading to potential data loss�

�� A malicious user instructs the LLM to return a JavaScript payload back to 
a user, causing unsanitized XSS payload execution.

Insecure Output 
Handling

LLM02

OWASP Top 10 for LLM|



This happens when an attacker 
manipulates the training data or fine-
tuning procedures of an LLM, introducing 
vulnerabilities, backdoors, or biases that 
compromise the model’s security, 
effectiveness, or ethical behavior. This 
can impact model performance, user 
trust, and brand reputation.

EXAMPLES

�� Malicious influence on model outputs via targeted, inaccurate 
documents�

�� Model training using unverified data�
�� Unrestricted dataset access by models leading to control loss.

PREVENTION

�� Verify training data supply chain and data source legitimacy�
�� Employ dedicated models per use-case�
�� Implement sandboxing, input filters, adversarial robustness�
�� Detect poisoning attacks via loss measurement and model analysis.

ATTACK SCENARIOS

�� Misleading LLM outputs result in biased opinions or hate crimes�
�� Injection of toxic data by malicious users�
�� Competitor manipulation of model's training data.

Training Data 
Poisoning

LLM03

OWASP Top 10 for LLM|



Model Denial of Service involves 
excessive resource consumption by an 
attacker's interaction with an LLM, leading 
to service quality decline and potential 
cost increases.

EXAMPLES

�� High-volume task generation through specific queries�
�� Unusually resource-consuming queries�
�� Continuous input overflow exceeding the LLM's context window�
�� Repeated long inputs or variable-length input floods.

PREVENTION

�� Implement input validation and sanitization�
�� Cap resource use per request�
�� Enforce API rate limits�
�� Monitor LLM resource utilization�
�� Set strict input limits based on the LLM’s context window�
�� Promote developer awareness about potential DoS vulnerabilities.

ATTACK SCENARIOS

�� Repeated requests to a hosted model, worsening service for other users�
�� Text on a webpage causing excessive web page requests�
�� Continuous input overflow or sequential inputs exhausting the context 

window�
�� Recursive context expansion or variable-length input floods.

Model Denial of 
Service

LLM04

OWASP Top 10 for LLM|



Supply-chain vulnerabilities can impact 
the entire lifecycle of LLM applications, 
including third-party libraries/packages, 
docker containers, base images, and 
service suppliers. These vulnerabilities 
can lead to cyber-attacks, data disclosure, 
and tampering.

EXAMPLES

�� Use of vulnerable third-party components or base images�
�� Use of a tampered pre-built model for fine-tuning�
�� Use of poisoned external data sets for fine-tuning.

PREVENTION

�� Vet data sources and suppliers, including their T&Cs and privacy policies�
�� Use reputable plug-ins and ensure they have been tested for your 

application requirements�
�� Maintain an up-to-date inventory of components using a Software Bill of 

Materials (SBOM).

ATTACK SCENARIOS

�� Exploitation of a vulnerable or outdated package or base image�
�� Exploitation of a malicious or vulnerable ChatGPT plugin�
�� Exploitation of an outdated or deprecated model with vulnerabilities.

Supply Chain 
Vulnerabilities

LLM05

OWASP Top 10 for LLM|



Sensitive Information Disclosure in LLMs 
refers to unintentional exposure of 
confidential details, including algorithms 
and user data, through system responses. 
This can lead to unauthorized access, 
privacy infringements, and other security 
breaches.

EXAMPLES

�� Malicious manipulation of model's training data�
�� Training models using unverified data�
�� Unrestricted model access to datasets.

PREVENTION

�� Utilize data sanitization and robust input validation�
�� Implement least privilege principle during fine-tuning�
�� Limit and control access to external data sources.

ATTACK SCENARIOS

�� Inadvertent user exposure to other user data via the LLM�
�� Bypassing input filters to trick LLM into leaking sensitive data�
�� Personal data leakage via training data.

Sensitive Information 
Disclosure

LLM06

OWASP Top 10 for LLM|



Insecure LLM plugin design results in 
vulnerabilities due to insecure inputs and 
insufficient access control. Plugin 
integration APIs could permit free text 
inputs without validation, enabling 
potential malicious requests. 
Misconfigurations and poor access 
controls can have consequences.

EXAMPLES

�� Plugins accepting undifferentiated parameters�
�� Plugins taking URL strings instead of query parameters�
�� Plugins permitting raw SQL queries�
�� Lack of distinct authorizations for chained plugins.

PREVENTION

�� Enforce parameterized input with type and range checks�
�� Apply OWASP’s recommendations for input validation�
�� Utilize least-privilege access control�
�� Use robust authentication like Oauth2�
�� Require user confirmation for sensitive plugins' actions.

ATTACK SCENARIOS

�� Malicious URL redirection for reconnaissance or content injection�
�� Exploitation of non-validated free-form input to perform harmful actions�
�� Unauthorized access through manipulation of configuration parameters�
�� SQL attacks via advanced filters�
�� Unsanctioned actions through insecure plugins.

Insecure Plugin 
Design

LLM07

OWASP Top 10 for LLM|



Excessive Agency in LLM refers to 
vulnerabilities enabling harmful actions 
due to unexpected LLM outputs, caused 
by excessive functionality, permissions, or 
autonomy.

EXAMPLES

�� Unnecessary or high-privilege plugin functions accessible to LLM�
�� Lack of proper input filtering in open-ended functions�
�� Over-granted permissions to LLM plugins.

PREVENTION

�� Limit plugin/tools accessible to LLM�
�� Implement only necessary functions in plugins�
�� Avoid open-ended functions, prefer granular functionality�
�� Limit LLM plugins' permissions on other systems�
�� Use OAuth for user authentication, granting minimum necessary 

privileges�
�� Require human approval for all actions.

ATTACK SCENARIOS

A personal assistant app with access to a user's mailbox is tricked into 
sending spam emails. Prevention: use a read-only plugin, authenticate with 
read-only scope, require user to manually send emails, or implement rate 
limiting on sending interface.

Excessive Agency

LLM08

OWASP Top 10 for LLM|



Overreliance on LLMs refers to the 
vulnerability that arises when systems or 
individuals excessively trust LLMs for 
decision-making or content creation 
without appropriate oversight, leading to 
potential misinformation, 
miscommunication, or security risks.

EXAMPLES

�� Misinformation from incorrect LLM outputs�
�� Logically incoherent LLM outputs�
�� Confusion due to LLM merging varied sources�
�� LLM-suggested insecure code�
�� Inadequate LLM risk communication.

PREVENTION

�� Monitor LLM outputs, filter inconsistencies, and enhance with fine-tuning�
�� Verify LLM outputs with trusted sources�
�� Implement automatic validation mechanisms�
�� Break tasks into subtasks�
�� Communicate LLM-related risks clearly�
�� Develop safe interfaces and APIs�
�� Establish secure coding practices.

Overreliance

LLM09

ATTACK SCENARIOS

�� False news spread due to AI misinformation�
�� Security vulnerabilities from AI coding suggestions�
�� Malicious package integration due to false LLM suggestion.

OWASP Top 10 for LLM|



LLM Model Theft refers to unauthorized 
access and extraction of Language Model 
models, leading to economic loss, 
competitive disadvantage, unauthorized 
model usage, and potential exposure of 
sensitive information.

EXAMPLES

�� External unauthorized access to LLM repositories�
�� Leaking models by insiders�
�� Network/application security misconfigurations�
�� Shared GPU services exploited for model access�
�� Replication of models via querying or prompt injection�
�� Side-channel attacks retrieving model data.

PREVENTION

�� Strong access controls/authentication for LLM repositories�
�� Limiting LLM's access to network resources�
�� Regular monitoring/auditing of LLM-related activities�
�� Automated MLOps deployment with governance�
�� Rate limiting and exfiltration detection techniques.

ATTACK SCENARIOS

�� Infrastructure vulnerability exploits�
�� Exploitation of shared GPU services�
�� Shadow model creation via API querying�
�� Insider-conducted side-channel attacks and employee leaks.

Model Theft

LLM10

OWASP Top 10 for LLM|



Key Reference Links
� Arxiv: Prompt Injection attack against LLM-integrated Application�

� Defending ChatGPT against Jailbreak Attack via Self-Reminde�

� GitHub: OpenAI Chat Markup Languag�

� Arxiv: Not what you’ve signed up for: Compromising Real-World 

LLM-Integrated Applications with Indirect Prompt Injectio�

� AI Village: Threat Modeling LLM Application�

� OpenAI: Safety Best Practice�

� Snyk: Arbitrary Code Executio�

� Stanford: Training Dat�

� CSO: How data poisoning attacks corrupt machine learning model�

� MITRE: ML Supply Chain Compromise

� MITRE: Tay Poisonin�

� Backdoor Attacks on Language Models: Can We Trust Our Model’s 

Weights�

� Arxiv: Poisoning Language Models During Instruction Tunin�

� ChatGPT Data Breach Confirmed as Security Firm Warns of 

Vulnerable Component Exploitatio�

� What Happens When an AI Company Falls Victim to a Software 

Supply Chain Vulnerabilit�

� OpenAI: Plugin Review Proces�

� Compromised PyTorch-nightly dependency chain

OWASP Top 10 for LLM|

https://arxiv.org/abs/2306.05499
https://www.researchsquare.com/article/rs-2873090/v1
https://github.com/openai/openai-python/blob/main/chatml.md
https://arxiv.org/pdf/2302.12173.pdf
https://arxiv.org/pdf/2302.12173.pdf
http://aivillage.org/large%20language%20models/threat-modeling-llm/
https://platform.openai.com/docs/guides/safety-best-practices
https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5411357
https://stanford-cs324.github.io/winter2022/lectures/data/
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://atlas.mitre.org/techniques/AML.T0010/
https://atlas.mitre.org/studies/AML.CS0009/
https://towardsdatascience.com/backdoor-attacks-on-language-models-can-we-trust-our-models-weights-73108f9dcb1f
https://towardsdatascience.com/backdoor-attacks-on-language-models-can-we-trust-our-models-weights-73108f9dcb1f
https://arxiv.org/abs/2305.00944
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://securityboulevard.com/2023/05/what-happens-when-an-ai-company-falls-victim-to-a-software-supply-chain-vulnerability/
https://securityboulevard.com/2023/05/what-happens-when-an-ai-company-falls-victim-to-a-software-supply-chain-vulnerability/
https://platform.openai.com/docs/plugins/review
https://pytorch.org/blog/compromised-nightly-dependency/

	Cover
	Summary Slide
	Vulnerability Slide- 1
	Vulnerability Slide- 2
	Vulnerability Slide- 3
	Vulnerability Slide- 4
	Vulnerability Slide- 5
	Vulnerability Slide- 6
	Vulnerability Slide- 7
	Vulnerability Slide- 8
	Vulnerability Slide- 9
	Vulnerability Slide- 10
	Links

