
V E R S I O N 1 . 0 . 1

Published: August 26, 2023

OWASP Top 10 for
LLM Applications

https://llmtop10.com

This manipulates a large language
model (LLM) through crafty inputs,
causing unintended actions by the LLM.
Direct injections overwrite system
prompts, while indirect ones manipulate
inputs from external sources.

Prompt Injection

LLM01

LLMs may inadvertently reveal
confidential data in its responses,
leading to unauthorized data access,
privacy violations, and security
breaches. Implement data sanitization
and strict user policies to mitigate this.

Sensitive Information
Disclosure

LLM06

LLM plugins can have insecure inputs
and insufficient access control due to
lack of application control. Attackers
can exploit these vulnerabilities,
resulting in severe consequences like
remote code execution.

Insecure Plugin

Design

LLM07

This vulnerability occurs when an LLM
output is accepted without scrutiny,
exposing backend systems. Misuse
may lead to severe consequences like
XSS, CSRF, SSRF, privilege escalation, or
remote code execution.

Insecure Output

Handling

LLM02

LLM-based systems may undertake
actions leading to unintended
consequences. The issue arises from
excessive functionality, permissions, or
autonomy granted to the LLM-based
systems.

Excessive Agency

LLM08

Training data poisoning refers to
manipulating the data or fine-tuning
process to introduce vulnerabilities,
backdoors or biases that could
compromise the model’s security,
effectiveness or ethical behavior.

Training Data

Poisoning

LLM03

Systems or people overly depending on
LLMs without oversight may face
misinformation, miscommunication,
legal issues, and security vulnerabilities
due to incorrect or inappropriate content
generated by LLMs.

Overreliance

LLM09

Attackers cause resource-heavy
operations on LLMs, leading to service
degradation or high costs. The
vulnerability is magnified due to the
resource-intensive nature of LLMs and
unpredictability of user inputs.

Model Denial of

Service

LLM04

This involves unauthorized access,
copying, or exfiltration of proprietary
LLM models. The impact includes
economic losses, compromised
competitive advantage, and potential
access to sensitive information.

Model Theft

LLM10

LLM application lifecycle can be
compromised by vulnerable
components or services, leading to
security attacks. Using third-party
datasets, pre- trained models, and
plugins add vulnerabilities.

Supply Chain
Vulnerabilities

LLM05

OWASP Top 10 for LLM Applications v1.0.1|

OWASP Top 10 for LLM Applications

OWASP Top 10 for LLM Applications v1.0.1|

Attackers can manipulate LLMs through
crafted inputs, causing it to execute the
attacker's intentions. This can be done
directly by adversarially prompting the
system prompt or indirectly through
manipulated external inputs, potentially
leading to data exfiltration, social
engineering, and other issues.

EXAMPLES

� Direct prompt injections overwrite system prompts�
� Indirect prompt injections hijack the conversation context�
� A user employs an LLM to summarize a webpage containing an indirect

prompt injection.

PREVENTION

� Enforce privilege control on LLM access to backend systems�
� Implement human in the loop for extensible functionality�
� Segregate external content from user prompts�
� Establish trust boundaries between the LLM, external sources, and

extensible functionality.

ATTACK SCENARIOS

� An attacker provides a direct prompt injection to an LLM-based support
chatbot�

� An attacker embeds an indirect prompt injection in a webpage�
� A user employs an LLM to summarize a webpage containing an indirect

prompt injection.

Prompt Injection

LLM01

Insecure Output Handling is a vulnerability
that arises when a downstream component
blindly accepts large language model (LLM)
output without proper scrutiny. This can
lead to XSS and CSRF in web browsers as
well as SSRF, privilege escalation, or remote
code execution on backend systems.

EXAMPLES

� LLM output is entered directly into a system shell or similar function,
resulting in remote code execution�

� JavaScript or Markdown is generated by the LLM and returned to a
user, resulting in XSS.

PREVENTION

� Apply proper input validation on responses coming from the model to
backend functions�

� Encode output coming from the model back to users to mitigate
undesired code interpretations.

ATTACK SCENARIOS

� An application directly passes the LLM-generated response into an
internal function responsible for executing system commands without
proper validation�

� A user utilizes a website summarizer tool powered by a LLM to generate a
concise summary of an article, which includes a prompt injection�

� An LLM allows users to craft SQL queries for a backend database through
a chat-like feature.

Insecure Output
Handling

LLM02

OWASP Top 10 for LLM Applications v1.0.1|

Training Data Poisoning refers to
manipulating the data or fine-tuning process
to introduce vulnerabilities, backdoors or
biases that could compromise the model’s
security, effectiveness or ethical behavior.
This risks performance degradation,
downstream software exploitation and
reputational damage.

EXAMPLES

� A malicious actor creates inaccurate or malicious documents
targeted at a model’s training data�

� The model trains using falsified information or unverified data which
is reflected in output.

PREVENTION

� Verify the legitimacy of targeted data sources during both the training and
fine-tuning stages�

� Craft different models via separate training data different use-cases�
� Use strict vetting or input filters for specific training data or categories of

data sources.

ATTACK SCENARIOS

� Output can mislead users of the application leading to biased opinions�
� A malicious user of the application may try to influence and inject toxic

data into the model�
� A malicious actor or competitor creates inaccurate or falsified information

targeted at a model’s training data�
� The vulnerability Prompt Injection could be an attack vector to this

vulnerability if insufficient sanitization and filtering is performed.

Training Data
Poisoning

LLM03

OWASP Top 10 for LLM Applications v1.0.1|

Model Denial of Service occurs when an
attacker interacts with a Large Language
Model (LLM) in a way that consumes an
exceptionally high amount of resources.
This can result in a decline in the quality of
service for them and other users, as well as
potentially incurring high resource costs.

EXAMPLES

� Posing queries that lead to recurring resource usage through high-
volume generation of tasks in a queue�

� Sending queries that are unusually resource-consuming�
� Continuous input overflow: An attacker sends a stream of input to the

LLM that exceeds its context window.

PREVENTION

� Implement input validation and sanitization to ensure input adheres to
defined limits, and cap resource use per request or step�

� Enforce API rate limits to restrict the number of requests an individual
user or IP address can make�

� Limit the number of queued actions and the number of total actions in a
system reacting to LLM responses.

ATTACK SCENARIOS

� Attackers send multiple requests to a hosted model that are difficult and
costly for it to process�

� A piece of text on a webpage is encountered while an LLM-driven tool is
collecting information to respond to a benign query�

� Attackers overwhelm the LLM with input that exceeds its context window.

Model Denial of
Service

LLM04

OWASP Top 10 for LLM Applications v1.0.1|

Supply chain vulnerabilities in LLMs can
compromise training data, ML models, and
deployment platforms, causing biased
results, security breaches, or total system
failures. Such vulnerabilities can stem from
outdated software, susceptible pre-trained
models, poisoned training data, and
insecure plugin designs.

EXAMPLES

� Using outdated third-party packages�
� Fine-tuning with a vulnerable pre-trained model�
� Training using poisoned crowd-sourced data�
� Utilizing deprecated, unmaintained models�
� Lack of visibility into the supply chain is.

PREVENTION

� Vet data sources and use independently-audited security systems�
� Use trusted plugins tested for your requirements�
� Apply MLOps best practices for own models�
� Use model and code signing for external models�
� Implement monitoring for vulnerabilities and maintain a patching policy�
� Regularly review supplier security and access.

ATTACK SCENARIOS

� Attackers exploit a vulnerable Python library�
� Attacker tricks developers via a compromised PyPi package�
� Publicly available models are poisoned to spread misinformation�
� A compromised supplier employee steals IP�
� An LLM operator changes T&Cs to misuse application data.

Supply Chain
Vulnerabilities

LLM05

OWASP Top 10 for LLM Applications v1.0.1|

LLM applications can inadvertently disclose
sensitive information, proprietary
algorithms, or confidential data, leading to
unauthorized access, intellectual property
theft, and privacy breaches. To mitigate
these risks, LLM applications should
employ data sanitization, implement
appropriate usage policies, and restrict the
types of data returned by the LLM.

EXAMPLES

� Incomplete filtering of sensitive data in responses�
� Overfitting or memorizing sensitive data during training�
� Unintended disclosure of confidential information due to errors.

PREVENTION

� Use data sanitization and scrubbing techniques�
� Implement robust input validation and sanitization�
� Limit access to external data sources�
� Apply the rule of least privilege when training models�
� Maintain a secure supply chain and strict access control.

ATTACK SCENARIOS

� Legitimate user exposed to other user data via LLM�
� Crafted prompts used to bypass input filters and reveal sensitive data�
� Personal data leaked into the model via training data increases risk.

Sensitive Information
Disclosure

LLM06

OWASP Top 10 for LLM Applications v1.0.1|

Plugins can be prone to malicious requests
leading to harmful consequences like data
exfiltration, remote code execution, and
privilege escalation due to insufficient
access controls and improper input
validation. Developers must follow robust
security measures to prevent exploitation,
like strict parameterized inputs and secure
access control guidelines.

EXAMPLES

� Plugins accepting all parameters in a single text field or raw SQL or
programming statements�

� Authentication without explicit authorization to a particular plugin�
� Plugins treating all LLM content as user-created and performing

actions without additional authorization.

PREVENTION

� Enforce strict parameterized input and perform type and range checks�
� Conduct thorough inspections and tests including SAST, DAST, and IAST�
� Use appropriate authentication identities and API Keys for authorization

and access control�
� Require manual user authorization for actions taken by sensitive plugins.

ATTACK SCENARIOS

� Attackers craft requests to inject their own content with controlled
domains�

� Attacker exploits a plugin accepting free-form input to perform data
exfiltration or privilege escalation�

� Attacker stages a SQL attack via a plugin accepting SQL WHERE clauses
as advanced filters.

Insecure Plugin
Design

LLM07

OWASP Top 10 for LLM Applications v1.0.1|

Excessive Agency in LLM-based systems is
a vulnerability caused by over-functionality,
excessive permissions, or too much
autonomy. To prevent this, developers need
to limit plugin functionality, permissions,
and autonomy to what's absolutely
necessary, track user authorization, require
human approval for all actions, and
implement authorization in downstream
systems.

EXAMPLES

� An LLM agent accesses unnecessary functions from a plugin�
� An LLM plugin fails to filter unnecessary input instructions�
� A plugin possesses unneeded permissions on other systems�
� An LLM plugin accesses downstream systems with high-privileged

identity.

PREVENTION

ATTACK SCENARIOS

An LLM-based personal assistant app with excessive permissions and
autonomy is tricked by a malicious email into sending spam. This could be
prevented by limiting functionality, permissions, requiring user approval, or
implementing rate limiting.

Excessive Agency

LLM08

OWASP Top 10 for LLM Applications v1.0.1|

� Limit plugins/tools that LLM agents can call, and limit functions
implemented in LLM plugins/tools to the minimum necessary�

� Avoid open-ended functions and use plugins with granular functionality�
� Require human approval for all actions and track user authorization�
� Log and monitor the activity of LLM plugins/tools and downstream

systems, and implement rate-limiting to reduce the number of undesirable
actions.

Overreliance on LLMs can lead to serious
consequences such as misinformation,
legal issues, and security vulnerabilities.

It occurs when an LLM is trusted to make
critical decisions or generate content
without adequate oversight or validation.

EXAMPLES

� LLM provides incorrect information�
� LLM generates nonsensical text�
� LLM suggests insecure code�
� Inadequate risk communication from LLM providers.

PREVENTION

� Regular monitoring and review of LLM outputs�
� Cross-check LLM output with trusted sources�
� Enhance model with fine-tuning or embeddings�
� Implement automatic validation mechanisms�
� Break tasks into manageable subtasks�
� Clearly communicate LLM risks and limitations�
� Establish secure coding practices in development environments.

Overreliance

LLM09

ATTACK SCENARIOS

� AI fed misleading info leading to disinformation�
� AI's code suggestions introduce security vulnerabilities�
� Developer unknowingly integrates malicious package suggested by AI.

OWASP Top 10 for LLM Applications v1.0.1|

LLM model theft involves unauthorized
access to and exfiltration of LLM models,
risking economic loss, reputation damage,
and unauthorized access to sensitive data.
Robust security measures are essential to
protect these models.

EXAMPLES

� Attacker gains unauthorized access to LLM model�
� Disgruntled employee leaks model artifacts�
� Attacker crafts inputs to collect model outputs�
� Side-channel attack to extract model info�
� Use of stolen model for adversarial attacks.

PREVENTION

� Implement strong access controls, authentication, and monitor/audit
access logs regularly�

� Implement rate limiting of API calls�
� Watermarking framework in LLM lifecycle�
� Automate MLOps deployment with governance.

ATTACK SCENARIOS

� Unauthorized access to LLM repository for data theft�
� Leaked model artifacts by disgruntled employee�
� Creation of a shadow model through API queries�
� Data leaks due to supply-chain control failure�
� Side-channel attack to retrieve model information.

Model Theft

LLM10

OWASP Top 10 for LLM Applications v1.0.1|

Key Reference Links

� Prompt Injection attack against LLM-integrated Applications: Cornell Universit�

� Defending ChatGPT against Jailbreak Attack via Self-Reminder: Research Squar�

� OpenAI Chat Markup Language: GitHu�

� Not what you’ve signed up for: Compromising Real-World LLM-Integrated Applications with

Indirect Prompt Injection: Cornell Universit�

� Threat Modeling LLM Applications: AI Villag�

� Safety Best Practices: OpenA�

� Arbitrary Code Execution: Sny�

� CS324 - Large Language Models: Stanford Universit�

� How data poisoning attacks corrupt machine learning models: CSO Onlin�

� ML Supply Chain Compromise: MITRE

� Tay Poisoning: MITR�

� Backdoor Attacks on Language Models: Can We Trust Our Model’s Weights?: Mediu�

� Poisoning Language Models During Instruction Tuning: Cornell Universit�

� ChatGPT Data Breach Confirmed as Security Firm Warns of Vulnerable Component

Exploitation: Security Wee�

� What Happens When an AI Company Falls Victim to a Software Supply Chain Vulnerability:

Security Boulevar�

� Plugin Review Process: OpenA�

� Compromised PyTorch-nightly dependency chain: PyTorch

OWASP Top 10 for LLM Applications v1.0.1|

https://arxiv.org/abs/2306.05499
https://www.researchsquare.com/article/rs-2873090/v1
https://github.com/openai/openai-python/blob/main/chatml.md
https://arxiv.org/pdf/2302.12173.pdf
https://arxiv.org/pdf/2302.12173.pdf
http://aivillage.org/large%20language%20models/threat-modeling-llm/
https://platform.openai.com/docs/guides/safety-best-practices
https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5411357
https://stanford-cs324.github.io/winter2022/lectures/data/
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://atlas.mitre.org/techniques/AML.T0010/
https://atlas.mitre.org/studies/AML.CS0009/
https://towardsdatascience.com/backdoor-attacks-on-language-models-can-we-trust-our-models-weights-73108f9dcb1f
https://arxiv.org/abs/2305.00944
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://securityboulevard.com/2023/05/what-happens-when-an-ai-company-falls-victim-to-a-software-supply-chain-vulnerability/
https://platform.openai.com/docs/plugins/review
https://pytorch.org/blog/compromised-nightly-dependency/

	Cover
	Summary Slide
	Vulnerability Slide- 1
	Vulnerability Slide- 2
	Vulnerability Slide- 3
	Vulnerability Slide- 4
	Vulnerability Slide- 5
	Vulnerability Slide- 6
	Vulnerability Slide- 7
	Vulnerability Slide- 8
	Vulnerability Slide- 9
	Vulnerability Slide- 10
	Links

