
V E R S I O N 1 . 1

Published: October 16, 2023

OWASP Top 10 for
LLM Applications

https://llmtop10.com

This manipulates a large language
model (LLM) through crafty inputs,
causing unintended actions by the LLM.
Direct injections overwrite system
prompts, while indirect ones manipulate
inputs from external sources.

Prompt Injection

LLM01

LLMs may inadvertently reveal
confidential data in its responses,
leading to unauthorized data access,
privacy violations, and security
breaches. It’s crucial to implement data
sanitization and strict user policies to
mitigate this.

Sensitive Information
Disclosure

LLM06

LLM plugins can have insecure inputs
and insufficient access control. This
lack of application control makes them
easier to exploit and can result in
consequences like remote code
execution.

Insecure Plugin

Design

LLM07

This vulnerability occurs when an LLM
output is accepted without scrutiny,
exposing backend systems. Misuse
may lead to severe consequences like
XSS, CSRF, SSRF, privilege escalation, or
remote code execution.

Insecure Output

Handling

LLM02

LLM-based systems may undertake
actions leading to unintended
consequences. The issue arises from
excessive functionality, permissions, or
autonomy granted to the LLM-based
systems.

Excessive Agency

LLM08

This occurs when LLM training data is
tampered, introducing vulnerabilities or
biases that compromise security,
effectiveness, or ethical behavior.
Sources include Common Crawl,
WebText, OpenWebText, & books.

Training Data

Poisoning

LLM03

Systems or people overly depending on
LLMs without oversight may face
misinformation, miscommunication,
legal issues, and security vulnerabilities
due to incorrect or inappropriate content
generated by LLMs.

Overreliance

LLM09

Attackers cause resource-heavy
operations on LLMs, leading to service
degradation or high costs. The
vulnerability is magnified due to the
resource-intensive nature of LLMs and
unpredictability of user inputs.

Model Denial of

Service

LLM04

This involves unauthorized access,
copying, or exfiltration of proprietary
LLM models. The impact includes
economic losses, compromised
competitive advantage, and potential
access to sensitive information.

Model Theft

LLM10

LLM application lifecycle can be
compromised by vulnerable
components or services, leading to
security attacks. Using third-party
datasets, pre- trained models, and
plugins can add vulnerabilities.

Supply Chain
Vulnerabilities

LLM05

OWASP Top 10 for LLM Applications v1.1|

OWASP Top 10 for LLM Applications

OWASP Top 10 for LLM Applications v1.1|

The diagram here presents a high level
architecture for a hypothetical large
language model application.

Overlaid in the diagram are highlighted
areas of risk illustrating how the OWASP
Top 10 for LLM Applications entries
intersect with the application flow.

Data Flow Diagram

OWASP Top 10 for LLM Applications v1.1|

Attackers can manipulate LLMs through
crafted inputs, causing it to execute the
attacker's intentions. This can be done
directly by adversarially prompting the
system prompt or indirectly through
manipulated external inputs, potentially
leading to data exfiltration, social
engineering, and other issues.

EXAMPLES

� Direct Prompt Injection: Malicious user injects prompts to extract
sensitive information�

� Indirect Prompt Injection: Users request sensitive data via webpage
prompts�

� Scam Through Plugins: Websites exploit plugins for scams.

PREVENTION

� Privilege Control: Limit LLM access and apply role-based permissions�
� Human Approval: Require user consent for privileged actions�
� Segregate Content: Separate untrusted content from user prompts�
� Trust Boundaries: Treat LLM as untrusted and visually highlight unreliable

responses.

ATTACK SCENARIOS

� Chatbot Remote Execution: Injection leads to unauthorized access via
chatbot�

� Email Deletion: Indirect injection causes email deletion�
� Exfiltration via Image: Webpage prompts exfiltrate private data�
� Misleading Resume: LLM incorrectly endorses a candidate�
� Prompt Replay: Attacker replays system prompts for potential further

attacks.

Prompt Injection

LLM01

Insecure Output Handling is a vulnerability
that arises when a downstream component
blindly accepts large language model (LLM)
output without proper scrutiny. This can
lead to XSS and CSRF in web browsers as
well as SSRF, privilege escalation, or remote
code execution on backend systems.

EXAMPLES

� Remote Code Execution: LLM output executed in system shell,
leading to code execution�

� Cross-Site Scripting (XSS): LLM-generated JavaScript or Markdown
causes browser interpretation.

PREVENTION

� Zero-Trust Approach: Treat LLM output like user input; validate and
sanitize it properly�

� OWASP ASVS Guidelines: Follow OWASP's standards for input validation
and sanitization�

� Output Encoding: Encode LLM output to prevent code execution in
JavaScript or Markdown.

ATTACK SCENARIOS

� Chatbot Shutdown: LLM output shuts down a plugin due to a lack of
validation�

� Sensitive Data Capture: LLM captures and sends sensitive data to an
attacker-controlled server�

� Database Table Deletion: LLM crafts a destructive SQL query, potentially
deleting all tables�

� XSS Exploitation: LLM returns unsanitized JavaScript payload, leading to
XSS on the victim's browser.

Insecure Output
Handling

LLM02

OWASP Top 10 for LLM Applications v1.1|

Training Data Poisoning refers to
manipulating the data or fine-tuning process
to introduce vulnerabilities, backdoors or
biases that could compromise the model’s
security, effectiveness or ethical behavior.
This risks performance degradation,
downstream software exploitation and
reputational damage.

EXAMPLES

� Malicious Data Injection: Injecting falsified data during model
training�

� Biased Training Outputs: Model reflects inaccuracies from tainted
data�

� Content Injection: Malicious actors inject biased content into
training.

PREVENTION

� Supply Chain Verification: Verify external data sources and maintain "ML-
BOM" records�

� Legitimacy Verification: Ensure data legitimacy throughout training
stages�

� Use-Case Specific Training: Create separate models for different use-
cases.

ATTACK SCENARIOS

� Misleading Outputs: LLM generates content that promotes bias or hate�
� Toxic Data Injection: Malicious users manipulate the model with biased

data�
� Malicious Document Injection: Competitors insert false data during

model training.

Training Data
Poisoning

LLM03

OWASP Top 10 for LLM Applications v1.1|

Model Denial of Service occurs when an
attacker interacts with a Large Language
Model (LLM) in a way that consumes an
exceptionally high amount of resources.
This can result in a decline in the quality of
service for them and other users, as well as
potentially incurring high resource costs.

EXAMPLES

� High-Volume Queuing: Attackers overload LLM with resource-
intensive tasks�

� Resource-Consuming Queries: Unusual queries strain system
resources�

� Continuous Input Overflow: Flooding LLM with excessive input�
� Repetitive Long Inputs: Repeated long queries exhaust resources�
� Recursive Context Expansion: Attackers exploit recursive behavior.

PREVENTION

� Input Validation: Implement input validation and content filtering�
� Resource Caps: Limit resource use per request�
� API Rate Limits: Enforce rate limits for users or IP addresses�
� Queue Management: Control queued and total actions�
� Resource Monitoring: Continuously monitor resource usage.

ATTACK SCENARIOS

� Resource Overuse: Attacker overloads a hosted model, impacting other
users�

� Webpage Request Amplification: LLM tool consumes excessive
resources due to unexpected content�

� Input Flood: Overwhelm LLM with excessive input, causing slowdown�
� Sequential Input Drain: Attacker exhausts context window with sequential

inputs.

Model Denial of
Service

LLM04

OWASP Top 10 for LLM Applications v1.1|

Supply chain vulnerabilities in LLMs can
compromise training data, ML models, and
deployment platforms, causing biased
results, security breaches, or total system
failures. Such vulnerabilities can stem from
outdated software, susceptible pre-trained
models, poisoned training data, and
insecure plugin designs.

EXAMPLES

� Package Vulnerabilities: Using outdated components�
� Vulnerable Models: Risky pre-trained models for fine-tuning�
� Poisoned Data: Tainted crowd-sourced data�
� Outdated Models: Using unmaintained models�
� Unclear Terms: Data misuse due to unclear terms.

PREVENTION

� Supplier Evaluation: Vet suppliers and policies�
� Plugin Testing: Use tested, trusted plugins�
� OWASP A06: Mitigate outdated component risks�
� Inventory Management: Maintain an up-to-date inventory�
� Security Measures: Sign models and code, apply anomaly detection, and

monitor.

ATTACK SCENARIOS

� Library Exploitation: Exploiting vulnerable Python libraries�
� Scamming Plugin: Deploying a plugin for scams�
� Package Registry Attack: Tricking developers with a compromised

package�
� Misinformation Backdoor: Poisoning models for fake news�
� Data Poisoning: Poisoning datasets during fine-tuning.

Supply Chain
Vulnerabilities

LLM05

OWASP Top 10 for LLM Applications v1.1|

LLM applications can inadvertently disclose
sensitive information, proprietary
algorithms, or confidential data, leading to
unauthorized access, intellectual property
theft, and privacy breaches. To mitigate
these risks, LLM applications should
employ data sanitization, implement
appropriate usage policies, and restrict the
types of data returned by the LLM.

EXAMPLES

� Incomplete Filtering: LLM responses may contain sensitive data�
� Overfitting: LLMs memorize sensitive data during training�
� Unintended Disclosure: Data leaks due to misinterpretation or lack of

scrubbing.

PREVENTION

� Data Sanitization: Use scrubbing to prevent user data in training�
� Input Validation: Filter malicious inputs to avoid model poisoning�
� Fine-Tuning Caution: Be careful with sensitive data in model fine-tuning�
� Data Access Control: Limit external data source access.

ATTACK SCENARIOS

� Unintentional Exposure: User A exposed to other user data�
� Filter Bypass: User A extracts PII by bypassing filters�
� Training Data Leak: Personal data leaks during training.

Sensitive Information
Disclosure

LLM06

OWASP Top 10 for LLM Applications v1.1|

Plugins can be prone to malicious requests
leading to harmful consequences like data
exfiltration, remote code execution, and
privilege escalation due to insufficient
access controls and improper input
validation. Developers must follow robust
security measures to prevent exploitation,
like strict parameterized inputs and secure
access control guidelines.

EXAMPLES

� Single Field Parameters: Plugins lack parameter separation�
� Configuration Strings: Configurations can override settings�
� Authentication Issues: Lack of specific plugin authorization�
� Raw SQL or Code: Unsafe acceptance of code or SQL.

PREVENTION

� Parameter Control: Enforce type checks and use a validation layer�
� OWASP Guidance: Apply ASVS recommendations�
� Thorough Testing: Inspect and test with SAST, DAST, IAST�
� Least-Privilege: Follow ASVS Access Control Guidelines�
� Auth Identities: Use OAuth2 and API Keys for custom authorization�
� User Confirmation: Require manual authorization for sensitive actions.

ATTACK SCENARIOS

� URL Manipulation: Attackers inject content via manipulated URLs�
� Reconnaissance and Exploitation: Exploiting lack of validation for code

execution and data theft�
� Unauthorized Access: Accessing unauthorized data through parameter

manipulation�
� Repository Takeover: Exploiting insecure code management plugin for

repository takeover.

Insecure Plugin
Design

LLM07

OWASP Top 10 for LLM Applications v1.1|

Excessive Agency in LLM-based systems is
a vulnerability caused by over-functionality,
excessive permissions, or too much
autonomy. To prevent this, developers need
to limit plugin functionality, permissions,
and autonomy to what's absolutely
necessary, track user authorization, require
human approval for all actions, and
implement authorization in downstream
systems.

EXAMPLES

� Excessive Functionality: LLM agents have unnecessary functions, risking
misuse�

� Excessive Permissions: Plugins may have excessive access to systems�
� Excessive Autonomy: LLMs lack human verification for high-impact

actions.

PREVENTION

ATTACK SCENARIOS

An LLM-based personal assistant app with excessive permissions and
autonomy is tricked by a malicious email into sending spam. This could be
prevented by limiting functionality, permissions, requiring user approval, or
implementing rate limiting.

Excessive Agency

LLM08

OWASP Top 10 for LLM Applications v1.1|

� Limit Plugin Functions: Allow only essential functions for LLM agents�
� Plugin Scope Control: Restrict functions within LLM plugins�
� Granular Functionality: Avoid open-ended functions; use specific plugins�
� Permissions Control: Limit permissions to the minimum required�
� User Authentication: Ensure actions are in the user's context�
� Human-in-the-Loop: Require human approval for actions�
� Downstream Authorization: Implement authorization in downstream

systems.

Overreliance on LLMs can lead to serious
consequences such as misinformation,
legal issues, and security vulnerabilities.

It occurs when an LLM is trusted to make
critical decisions or generate content
without adequate oversight or validation.

EXAMPLES

� Misleading Info: LLMs can provide misleading info without validation�
� Insecure Code: LLMs may suggest insecure code in software.

PREVENTION

� Monitor and Validate: Regularly review LLM outputs with consistency
checks�

� Cross-Check: Verify LLM output with trusted sources�
� Fine-Tuning: Enhance LLM quality with task-specific fine-tuning�
� Auto Validation: Implement systems to verify output against known facts�
� Task Segmentation: Divide complex tasks to reduce risks�
� Risk Communication: Communicate LLM limitations�
� User-Friendly Interfaces: Create interfaces with content filters and

warnings�
� Secure Coding: Establish guidelines to prevent vulnerabilities.

Overreliance

LLM09

ATTACK SCENARIOS

� Disinfo Spread: Malicious actors exploit LLM-reliant news organizations�
� Plagiarism: Unintentional plagiarism leads to copyright issues�
� Insecure Software: LLM suggestions introduce security vulnerabilities�
� Malicious Package: LLM suggests a non-existent code library.

OWASP Top 10 for LLM Applications v1.1|

LLM model theft involves unauthorized
access to and exfiltration of LLM models,
risking economic loss, reputation damage,
and unauthorized access to sensitive data.
Robust security measures are essential to
protect these models.

EXAMPLES

� Vulnerability Exploitation: Unauthorized access due to security flaws�
� Central Model Registry: Centralized security for governance�
� Insider Threat: Risk of employee model leaks�
� Side-Channel Attack: Extraction of model details through side

techniques.

PREVENTION & MITIGATION

� Access Control and Authentication: Strong access controls and
authentication�

� Network Restrictions: Limit LLM access to resources and APIs�
� Monitoring and Auditing: Regular monitoring of access logs�
� MLOps Automation: Secure deployment with approval workflows.

ATTACK SCENARIOS

� Model Theft: Unauthorized access and use for competition�
� Employee Leak: Exposure increases risks�
� Shadow Model Creation: Replicating models with queries�
� Side-Channel Attack: Extraction through side techniques.

Model Theft

LLM10

OWASP Top 10 for LLM Applications v1.1|

Key Reference Links

� Prompt Injection attack against LLM-integrated Applications: Cornell Universit�

� Defending ChatGPT against Jailbreak Attack via Self-Reminder: Research Squar�

� OpenAI Chat Markup Language: GitHu�

� Not what you’ve signed up for: Compromising Real-World LLM-Integrated Applications with

Indirect Prompt Injection: Cornell Universit�

� Threat Modeling LLM Applications: AI Villag�

� Safety Best Practices: OpenA�

� Arbitrary Code Execution: Sny�

� CS324 - Large Language Models: Stanford Universit�

� How data poisoning attacks corrupt machine learning models: CSO Onlin�

� ML Supply Chain Compromise: MITRE

� Tay Poisoning: MITR�

� Backdoor Attacks on Language Models: Can We Trust Our Model’s Weights?: Mediu�

� Poisoning Language Models During Instruction Tuning: Cornell Universit�

� ChatGPT Data Breach Confirmed as Security Firm Warns of Vulnerable Component

Exploitation: Security Wee�

� What Happens When an AI Company Falls Victim to a Software Supply Chain Vulnerability:

Security Boulevar�

� Plugin Review Process: OpenA�

� Compromised PyTorch-nightly dependency chain: PyTorch

OWASP Top 10 for LLM Applications v1.1|

https://arxiv.org/abs/2306.05499
https://www.researchsquare.com/article/rs-2873090/v1
https://github.com/openai/openai-python/blob/main/chatml.md
https://arxiv.org/pdf/2302.12173.pdf
https://arxiv.org/pdf/2302.12173.pdf
http://aivillage.org/large%20language%20models/threat-modeling-llm/
https://platform.openai.com/docs/guides/safety-best-practices
https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5411357
https://stanford-cs324.github.io/winter2022/lectures/data/
https://www.csoonline.com/article/570555/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://atlas.mitre.org/techniques/AML.T0010/
https://atlas.mitre.org/studies/AML.CS0009/
https://towardsdatascience.com/backdoor-attacks-on-language-models-can-we-trust-our-models-weights-73108f9dcb1f
https://arxiv.org/abs/2305.00944
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://securityboulevard.com/2023/05/what-happens-when-an-ai-company-falls-victim-to-a-software-supply-chain-vulnerability/
https://platform.openai.com/docs/plugins/review
https://pytorch.org/blog/compromised-nightly-dependency/

