
OWASP Top 10 
for LLM

2 0 2 3

owasp.org/www-project-top-10-for-large-language-model-applications

https://owasp.org/www-project-top-10-for-large-language-model-applications/


OWASP Top 10 for LLM|

2OWASP.org

Introduction
Welcome to the first iteration of the OWASP Top 10 for Large Language Models (LLMs) Applications.

With the release of version 0.9, we take a moment to acknowledge the ever-growing expertise of our team. We've grown 
to over 440 members, comprised of security specialists, AI researchers, developers, and industry leaders. Since our 
previous update, our active contributors have grown to over 125 experts. This growth underlines the importance of our 
mission and the determination of those who have joined us in this endeavor.

We take this moment to thank our dedicated team. Your commitment, expertise, and passion have been crucial in 
moving this project forward. We deeply appreciate your insightful contributions and the hard work you've put into this 
initiative.

ANOTHER STEP FORWARD

As outlined in the OWASP Top 10 for LLM Applications Working Group Charter, our mission is to pinpoint and illuminate 
the key security and safety challenges that developers and security teams need to address when developing 
applications using Large Language Models (LLMs). Our commitment is to provide clear, practical, and actionable 
guidance to these teams, equipping them to proactively counter potential vulnerabilities in LLM-based applications.

Our ultimate goal is to establish a solid foundation for the safe and secure use of LLMs across a broad spectrum of 
scenarios, from individual projects to expansive corporate and governmental implementations. We hold firm in our belief 
that by understanding and mitigating the primary vulnerabilities inherent to LLMs, we can create a safer, more reliable 
digital landscape for all.

OUR MISSION

We present to you Version 0.9, an essential milestone in our ongoing journey. This version embodies our collective 
growth in comprehending and addressing the unique vulnerabilities inherent in LLM-based applications. In this release, 
based on valuable expert feedback, we have merged two vulnerabilities from the 0.5 list into one, and introduced a new 
vulnerability that just missed the 0.5 inclusion. Importantly, each vulnerability in this list has been rigorously examined by 
dedicated sub-teams consisting of at least 12 experts, ensuring more comprehensive coverage and understanding.

We regard this version as our 'release candidate', the final call for feedback as we stride towards the forthcoming 
Version 1.0. We eagerly invite your invaluable feedback on this refined version, which will serve to further shape our 
understanding and approach as we press on towards our ultimate goal.

Once again, we extend our heartfelt thanks to our expert team and the wider community for their sustained support. 
Together, let's navigate the intricate realm of LLMs, with a focus on security, safety, and inclusivity at every juncture.

Project Lead, OWASP Top 10 for LLM AI Applications

Twitter: @virtualsteve

Steve Wilson

ABOUT THIS RELEASE

http://twitter.com/@virtualsteve


OWASP Top 10 for LLM|

3OWASP.org

OWASP Top 10 for LLM
Welcome to the first iteration of the OWASP Top 10 for Large Language Models (LLMs) Applications.

This involves unauthorized access, copying, or exfiltration 
of proprietary LLM models. The impact includes 
economic losses, compromised competitive advantage, 
and potential access to sensitive information.

LLM10: Model Theft

Systems or people overly depending on LLMs without 
oversight may face misinformation, miscommunication, 
legal issues, and security vulnerabilities due to incorrect or 
inappropriate content generated by LLMs.

LLM09: Overreliance

LLM-based systems may undertake actions leading to 
unintended consequences. The issue arises from 
excessive functionality, permissions, or autonomy granted 
to the LLM-based systems.

LLM08: Excessive Agency

LLM plugins can have insecure inputs and insufficient 
access control due to lack of application control. 
Attackers can exploit these vulnerabilities, resulting in 
severe consequences like remote code execution.

LLM07: Insecure Plugin Design

LLM’s may inadvertently reveal confidential data in its 
responses, leading to unauthorized data access, privacy 
violations, and security breaches. It’s crucial to implement 
data sanitization and strict user policies to mitigate this.

LLM06: Sensitive Information Disclosure

LLM application lifecycle can be compromised by 
vulnerable components or services, leading to security 
attacks. Using third-party datasets, pre- trained models, 
and plugins add vulnerabilities.

LLM05: Supply Chain Vulnerabilities

Attackers cause resource-heavy operations on LLMs, 
leading to service degradation or high costs. The 
vulnerability is magnified due to the resource-intensive 
nature of LLMs and unpredictability of user inputs.

LLM04: Model Denial of Service

This occurs when LLM training data is tampered, 
introducing vulnerabilities or biases that compromise 
security, effectiveness, or ethical behavior. Sources 
include Common Crawl, WebText, OpenWebText, & books.

LLM03: Training Data Poisoning

This vulnerability occurs when an LLM output is accepted 
without scrutiny, exposing backend systems. Misuse may 
lead to severe consequences like XSS, CSRF, SSRF, 
privilege escalation, or remote code execution.

LLM02: Insecure Output Handling

This manipulates a large language model (LLM) through 
crafty inputs, causing unintended actions by the LLM. 
Direct injections overwrite system prompts, while indirect 
ones manipulate inputs from external sources.

LLM01: Prompt Injection



OWASP Top 10 for LLM|

4OWASP.org

LLM01: Prompt Injections
First Published: July 1st, 2023

A Prompt Injection Vulnerability manifests when an attacker manages to manipulate the 
operation of a trusted large language model (LLM) through crafted inputs. This results in 
the LLM acting as a “confused deputy” on behalf of the attacker. Given the high degree of 
trust usually associated with an LLM's output, the manipulated responses may go 
unnoticed and even be trusted by the user, allowing the attacker's intentions to take effect. 
Prompt injections can be introduced via various avenues, including websites, emails, 
documents, or any other data source that an LLM might access during a user session. 

Prompt injections can occur either directly or indirectly:

� Direct Prompt Injection: A direct prompt injection, also known as "jailbreaking", occurs 
when an malicious user overwrites or reveals the underlying system prompt. This 
could allow the malicious user to exploit backend systems by interacting with insecure 
functions and data stores accessible through the LLM.

� Indirect Prompt Injection: An indirect prompt injection occurs when an LLM accepts 
input from external sources that can be controlled by an attacker, such as from reading 
a website or an uploaded file. The attacker may embed a prompt injection on the 
website or uploaded file that hijacks the conversation context. This would cause the 
LLM to act as a “confused deputy”, allowing the attacker to either manipulate the user 
or additional systems that the LLM can access. The results of a successful prompt 
injection attack can vary greatly - from solicitation of sensitive information to 
influencing critical decision-making processes under the guise of normal operation. In 
more complex attacks, the LLM might be driven to impersonate a malicious persona or 
tricked to interact with plugins within the target user's context. This can lead to 
sensitive information disclosure, data exfiltration, unauthorized plugin execution, social 
engineering, etc. In these instances, the compromised LLM acts as an agent for the 
attacker, furthering their objectives while bypassing usual safeguards or alerting the 
end user to the intrusion.


� Example 1: An attacker crafts an adversarial prompt to the LLM which instructs it to 
ignore the application creator's system prompts and instead execute a prompt that 
returns private, dangerous or otherwise undesirable information.

Common Examples of Vulnerability



OWASP Top 10 for LLM|

5OWASP.org

� Example 2: A user employs an LLM to summarize a webpage containing a hidden 
prompt injection. This then causes the LLM to solicit sensitive information from the 
user and perform exfiltration via JavaScript or Markdown�

� Example 3: A malicious user uploads a resume with a prompt injection. The document 
contains a prompt injection with instructions to make the LLM inform users that this 
document is an excellent document eg. excellent candidate for a job role. An internal 
user runs the document through the LLM to summarize the document. The output of 
the LLM returns information stating that this is an excellent document�

� Example 4: A user enables a plugin linked to an e-commerce site. A rogue instruction 
embedded on a visited website exploits this plugin, leading to unauthorized purchases.

How to Prevent

Note: Prompt injection vulnerabilities are possible due to the nature of LLMs, which do not 
segregate instructions and external data from each other. Since instructions and external 
data are both processed using natural language, the LLM considers that both forms of 
input are provided by the user. Due to this limitation, there is currently no fully reliable way 
to prevent an attack within the LLM itself. However, trust controls can be placed outside of 
the LLM to mitigate the impact of prompt injection attempts�

� Privilege Control: Provide the LLM with its own API tokens for extensible functionality, 
such as plugins, data access, and function level permissions. Follow the principle of 
least privilege by restricting the LLM to only the minimum level of access necessary for 
its intended operations�

� Implement Human in the Loop: When performing privileged operations, such as 
sending or deleting emails, have the application require the user to approve the action 
first. This will mitigate the opportunity for an indirect prompt injection to perform 
actions on behalf of the user without their knowledge or consent�

� Segregate External Content: Separate and denote where untrusted content is being 
used to limit their influence on user prompts. For example, use ChatML for OpenAI API 
calls to indicate to the LLM the source of prompt input�

� Manage Trust: Establish trust boundaries between the LLM, external sources, and 
extensible functionality (e.g., plugins or downstream functions). Treat the LLM as an 
untrusted user and maintain final user control on decision making processes. However, 
a compromised LLM may still act as an intermediary (man-in-the-middle) between your 
application’s APIs and the user- consider that it could hide or manipulate information 
presented to the user. Highlight potentially untrustworthy responses visually to the 
user.



OWASP Top 10 for LLM|

6OWASP.org

� Scenario 1: An LLM is given the ability to read internet-facing websites to gather 
information for users. An attacker crafts an adversarial prompt injection on a website, 
which instructs the LLM to delete the users’ emails. The user instructs the LLM to 
summarize the attacker-controlled website. As a result, the LLM will disregard previous 
instructions and perform the actions specified by the attacker�

� Scenario 2: A recruiting firm uses an LLM to review candidate resumes. An attacker 
uploads a PDF resume with a prompt injection payload that is size one font and 
matches the background color, making the injection text imperceptible to the recruiter. 
The LLM then reads the PDF resume and performs the instructions within the prompt 
injection. This can lead to the LLM being instructed to lie to the recruiting agent, 
stating that the candidate would be a perfect fit for any job they are being evaluated for 
regardless of actual qualifications�

� Scenario 3: A malicious user interacts with an LLM support chatbot. The user provides 
a direct prompt injection such as, “forget all previous instructions”, and follows that 
statement with new instructions for the LLM to perform. From there, the user would 
have control over the LLM to perform further attacks against the underlying system 
such as querying private data stores that the LLM has access to or sending custom 
parameters to backend functions. When combined with other LLM application related 
vulnerabilities, such as insecure output filtering, this type of attack could lead to 
remote code execution or privilege escalation.

� ChatGPT Plugin Vulnerabilities - Chat with Code: https://embracethered.com/blog/
posts/2023/ chatgpt-plugin-vulns-chat-with-code�

� ChatGPT Cross Plugin Request Forgery and Prompt Injection: https://
embracethered.com/blog/ posts/2023/chatgpt-cross-plugin-request-forgery-and-
prompt-injection.�

� Defending ChatGPT against Jailbreak Attack via Self-Reminder: https://
www.researchsquare.com/ article/rs-2873090/v�

� Prompt Injection attack against LLM-integrated Applications: https://arxiv.org/
abs/2306.0549�

� Inject My PDF: Prompt Injection for your Resume: https://kai-greshake.de/posts/
inject-my-pdf�

� ChatML for OpenAI API Calls: https://github.com/openai/openai-python/blob/main/
chatml.m�

� Not what you’ve signed up for- Compromising Real-World LLM-Integrated 
Applications with Indirect Prompt Injection: https://arxiv.org/pdf/2302.12173.pdf

Example Attack Scenarios

Reference Links



OWASP Top 10 for LLM|

7OWASP.org

� Threat Modeling LLM Applications: http://aivillage.org/large%20language%20models/
threat-modeling-llm�

� AI Injections- Direct and Indirect Prompt Injections and Their Implications: https:/�
� embracethered.com/blog/posts/2023/ai-injections-direct-and-indirect-prompt-

injection-basics�
� Reducing The Impact of Prompt Injection Attacks Through Design: https://

research.kudelskisecurity.com/2023/05/25/reducing-the-impact-of-prompt-injection-
attacks-through-design�

� Open AI Safety best practices: https://platform.openai.com/docs/guides/safety-best-
practices



OWASP Top 10 for LLM|

8OWASP.org

LLM02: Insecure Output Handling
First Published: July 1st, 2023

An Insecure Output Handling vulnerability is a type of prompt injection vulnerability that 
arises when a plugin or application blindly accepts large language model (LLM) output 
without proper scrutiny and directly passes it to backend, privileged, or client-side 
functions. Since LLM-generated content can be controlled by prompt input, this behavior 
is akin to providing users indirect access to additional functionality.



Successful exploitation of an Insecure Output Handling vulnerability can result in XSS and 
CSRF in web browsers as well as SSRF, privilege escalation, or remote code execution on 
backend systems. The impact of this vulnerability increases when the application allows 
LLM content to perform actions above the intended user's privileges. Additionally, this can 
be combined with agent hijacking attacks to allow an attacker privileged access into a 
target user's environment.

� Example 1: LLM output is entered directly into a backend function, resulting in remote 
code execution�

� Example 2: JavaScript or Markdown is generated by the LLM and returned to a user. 
The code is then interpreted by the browser, resulting in XSS.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

� Prevention Step 1: Treat the model as any other user and apply proper input validation 
on responses coming from the model to backend functions�

� Prevention Step 2: Likewise, encode output coming from the model back to users to 
mitigate undesired JavaScript or Markdown code interpretations.

Common Examples of Vulnerability

How to PreventHow to PreventHow to Prevent



OWASP Top 10 for LLM|

9OWASP.org

� Scenario 1: An application utilizes an LLM plugin to generate responses for a chatbot 
feature. However, the application directly passes the LLM-generated response into an 
internal function responsible for executing system commands without proper 
validation. This allows an attacker to manipulate the LLM output to execute arbitrary 
commands on the underlying system, leading to unauthorized access or unintended 
system modifications�

� Scenario 2: A user utilizes a website summarizer tool powered by a LLM to generate a 
concise summary of an article. The website includes a prompt injection instructing the 
LLM to capture sensitive content from either the website or from the users 
conversation. From there the LLM can encode the sensitive data and send it out to an 
attacker-controlled server�

� Scenario 3: An LLM allows users to craft SQL queries for a backend database through 
a chat-like feature. A user requests a query to delete all database tables. If the crafted 
query from the LLM is not scrutinized, then all database tables would be deleted�

� Scenario 4: A malicious user instructs the LLM to return a JavaScript payload back to 
a user, without sanitization controls. This can occur either through a sharing a prompt, 
prompt injected website, or chatbot that accepts prompts from a GET request. The 
LLM would then return the unsanitized XSS payload back to the user. Without 
additional filters, outside of those expected by the LLM itself, the JavaScript would 
execute within the users browser.

� Snyk Vulnerability DB- Arbitrary Code Execution: https://security.snyk.io/vuln/SNYK-
PYTHON- LANGCHAIN-541135�

� ChatGPT Plugin Exploit Explained: From Prompt Injection to Accessing Private Data: 
https:// embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-
and-prompt-injection.�

� New prompt injection attack on ChatGPT web version. Markdown images can steal 
your chat data: https://systemweakness.com/new-prompt-injection-attack-on-chatgpt-
web-version- ef717492c5c�

� Don't blindly trust LLM responses. Threats to chatbots: https://embracethered.com/
blog/posts/ 2023/ai-injections-threats-context-matters�

� Threat Modeling LLM Applications: https://aivillage.org/large language models/threat-
modeling-llm/

Example Attack Scenarios

Reference Links



OWASP Top 10 for LLM|

10OWASP.org

LLM03: Training Data Poisoning
First Published: July 1st, 2023

The starting point of any machine learning approach is training data. In terms of large 
language models, the training data is just “raw text”. To be highly capable (e.g., have 
linguistic and world knowledge), this text should span a broad range of domains, genres, 
languages, etc�

� A large language model uses deep neural networks to generate outputs based on 
patterns learned from training data.



Training data poisoning occurs when an attacker or unaware client of the LLM 
manipulates the training data or fine-tuning procedures of an LLM to introduce 
vulnerabilities, backdoors, or biases that could compromise the model’s security, 
effectiveness, or ethical behavior�

� This unethical or incorrect information is then presented to users of the AI�

� In cases where the user does not trust the AI and is not influenced, there are still many 
risks associated with the vulnerability, such as model performance and even down to 
brand reputation�

� Data poisoning is considered an integrity attack because tampering with the training 
data impacts the model’s ability to output correct predictions. There are several data 
sources that are worth discussing:



Common Crawl: Because of its convenience, it has been a standard source of data to train 
many models such as T5, GPT-3, and Gopher. The April 2021 snapshot of Common Crawl 
has 320 terabytes of data.



WebText and OpenWebText: Data including public news, Wikipedia, fiction, and the Reddit 
submissions dataset.



Books: As an example, it comprises 16% of the training mix in the GPT-3 model training.

� Example 1: A malicious actor, or a competitor brand intentionally creates inaccurate or 
malicious documents which are targeted at a model’s training data.

Common Examples of Vulnerability



OWASP Top 10 for LLM|

11OWASP.org

� The victim model trains using falsified information which is reflected in outputs of 
generative AI prompts to it's consumers�

� Example 2: In reverse, unintentionally, a model is trained using data which has not 
been verified by its source, origin or content�

� Example 3: The model itself when situated within infrastructure, has unrestricted 
access or inadequate sandboxing to gather datasets to be used as training data which 
has negative influence on outputs of generative AI prompts as well as loss of control 
from a management perspective.



It is important to note that as a user of an LLM to be aware of this vulnerability. Whether a 
developer, client or consumer of the LLM, it is important to understand the implications of 
how this vulnerability could reflect risks within your LLM application or when interacting with 
a third-party LLM.

� Verify the supply chain of the training data, especially when sourced externally as well 
as maintaining attestations, similar to the "SBOM" (Software Bill of Materials) 
methodology�

� Verify the legitimacy of data sources and data contained within during both the training 
and fine- tuning stages�

� Verify your use-case for the LLM and the application it will integrate to. Craft different 
models via separate training data or fine-tuning for different use-cases to create a 
more granular and accurate generative AI output as per it's defined use-case�

� Ensure sufficient sandboxing is present to prevent the model from scraping unintended 
data sources which could hinder the machine learning output�

� Use strict vetting or input filters for specific training data, or categories of data sources 
to control volume of falsified data. Data sanitization, with techniques such as 
statistical outlier detection and anomaly detection methods to detect and remove 
adversarial data from potentially being fed into the fine-tuning process�

� Adversarial Robustness, with techniques such as federated learning, constraints to 
minimize the effect of outliers or adversarial training to be robust against worst-case 
perturbations of the training data.

Example Attack Scenarios

How to Prevent



OWASP Top 10 for LLM|

12OWASP.org

� An "MLSecOps" approach could be to include adversarial robustness to the 
training lifecycle with the auto poisoning technique�

� An example repository of this would be Autopoison testing, including both 
attacks such as Content Injection Attacks (“how to inject your brand into the 
LLM responses”) and Refusal Attacks (“always making the model refuse to 
respond”) that can be accomplished with this approach�

� Testing and Detection, by measuring the loss during the training stage and analyzing 
trained models to detect signs of a poisoning attack by analyzing model behavior on 
specific test inputs�

� Monitoring and alerting on number of skewed responses exceeding a threshold�

� Use of a human loop to review responses and auditing�

� Implement dedicated LLM's to benchmark against undesired consequences and train 
other LLM's using reinforcement learning techniques�

� Optional: Perform LLM-based red team exercises or LLM vulnerability scanning into 
the testing phases of the LLM's lifecycle.

� Scenario #1: The LLM generative AI prompt output can mislead users of the 
application which can lead to biased opinions, followings or even worse, hate crimes 
etc�

� Scenario #2: If the training data is not correctly filtered and|or sanitized, a malicious 
user of the application may try to influence and inject toxic data into the model for it to 
adapt to the biased and false data�

� Scenario #3: A malicious actor, or competitor intentionally creates inaccurate or 
malicious documents which are targeted at a model’s training data in which is training 
the model at the same time based on inputs. The victim model trains using this 
falsified information which is reflected in outputs of generative AI prompts to it's 
consumers.

Example Attack Scenarios



OWASP Top 10 for LLM|

13OWASP.org

� Stanford Research Paper: https://stanford-cs324.github.io/winter2022/lectures/data�
� How data poisoning attacks corrupt machine learning models: https://

www.csoonline.com/article/3613932/how-data-poisoning-attacks-corrupt-machine-
learning-models.htm�

� MITRE ATLAS (framework) Tay Poisoning: https://atlas.mitre.org/studies/
AML.CS0009�

� PoisonGPT: How we hid a lobotomized LLM on Hugging Face to spread fake news: 
https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-
face-to-spread-fake-news�

� Inject My PDF: Prompt Injection for your Resume: https://kai-greshake.de/posts/
inject-my-pdf�

� Backdoor Attacks on Language Models: https://towardsdatascience.com/backdoor-
attacks-on-language-models-can-we-trust-our-models-weights-73108f9dcb1�

� Poisoning Language Models During Instruction: https://arxiv.org/abs/2305.0094�
� FedMLSecurity: https://arxiv.org/abs/2306.0495�
� The poisoning of ChatGPT: https://softwarecrisis.dev/letters/the-poisoning-of-

chatgpt�
� LLM10:2023 - Training Data Poisoning: https://owasp.org/www-project-top-10-for-

large-language-model-applications/descriptions/Training_Data_Poisoning.htm�
� Cloud Security Podcast by Google | EP68 How We Attack AI?: https://

podcasts.google.com/feed/
aHR0cHM6Ly9jbG91ZHNlY3VyaXR5cG9kY2FzdC5saWJzeW4uY29tL3Jzcw/episode/ 
ZmI4ZWMyM2MtOGUwYi00YjQ1LTg5YjctMjBhOTUxMDM2YTIx?ep=14

Reference Links



OWASP Top 10 for LLM|

14OWASP.org

LLM04: Model Denial of Service
First Published: July 1st, 2023

An attacker interacts with a LLM model in a method that consumes an exceptionally high 
amount of resources, which results in a decline in the quality of service for them and other 
users, as well as potentially incurring high resource costs. Furthermore, an emerging 
major security concern is the possibility of an attacker interfering with or manipulating the 
context window of an LLM. This issue is becoming more critical due to the increasing use 
of LLMs in various applications, their intensive resource utilization, the unpredictability of 
user input, and a general unawareness among developers regarding this vulnerability. In 
LLMs, the context window represents the maximum length of text the model can manage, 
covering both input and output. It’s a crucial characteristic of LLMs as it dictates the 
complexity of language patterns the model can understand and the size of the text it can 
process at any given time. The size of the context window is defined by the model’s 
architecture and can differ between models.

� Posing queries that lead to recurring resource usage through high-volume generation 
of tasks in a queue, e.g. with LangChain or AutoGPT�

� Sending queries that are unusually resource-consuming, perhaps because they use 
unusual orthography or sequences�

� Continuous input overflow: An attacker sends a stream of input to the LLM that 
exceeds its context window, causing the model to consume excessive computational 
resources�

� Repetitive long inputs: The attacker repeatedly sends long inputs to the LLM, each 
exceeding the context window�

� Recursive context expansion: The attacker constructs input that triggers recursive 
context expansion, forcing the LLM to repeatedly expand and process the context 
window�

� Variable-length input flood: The attacker floods the LLM with a large volume of 
variable-length inputs, where each input is carefully crafted to just reach the limit of the 
context window. This technique exploits inefficiencies in processing variable-length 
inputs, straining the LLM and potentially causing it to become unresponsive.

Common Examples of Vulnerability



OWASP Top 10 for LLM|

15OWASP.org

� An attacker repeatedly sends multiple requests to a hosted model that are difficult and 
costly for it to process, leading to worse service for other users and increased 
resource bills for the host�

� A piece of text on a webpage is encountered while an LLM-driven tool is collecting 
information to respond to a benign query. This leads to the tool making many more 
web page requests, resulting in large amounts of resource consumption�

� Context Window Overflow (Continuous Bombarding): In this scenario, the attacker 
continuously bombards the LLM with input that exceeds its context window. The 
attacker may use automated scripts or tools to send a high volume of input, 
overwhelming the LLM’s processing capabilities. As a result, the LLM consumes 
excessive computational resources, leading to a significant slowdown or complete 
unresponsiveness of the system�

� Context Window Exhaustion (Persistent Sequential Inputs): In this attack scenario, the 
attacker sends a series of sequential inputs to the LLM, with each input designed to be 
just below the context window’s limit. By repeatedly submitting these inputs, the 
attacker aims to exhaust the available context window capacity. As the LLM struggles 
to process each input within its context window, system resources become strained, 
potentially resulting in degraded performance or a complete denial of service�

� Recursive Context Expansion (Exploiting Recursive Mechanisms): In this attack 
scenario, the attacker leverages the LLM’s recursive mechanisms to trigger context 
expansion repeatedly. By crafting input that exploits the recursive behavior of the LLM, 
the attacker forces the model to repeatedly expand and process the context window, 
consuming significant computational resources. This attack strains the system and 
may lead to a DoS condition, making the LLM unresponsive or causing it to crash�

� Variable-Length Input Flood (Flooding with Variable-Length Inputs): In this attack 
scenario, the attacker floods the LLM with a large volume of variable-length inputs, 
carefully crafted to approach or reach the context window’s limit. By overwhelming the 
LLM with inputs of varying lengths, the attacker aims to exploit any inefficiencies in 
processing variable-length inputs. This flood of inputs puts excessive load on the 
LLM’s resources, potentially causing performance degradation and hindering the 
system’s ability to respond to legitimate requests.

� Implement input validation and sanitization to ensure user input adheres to defined 
limits and filters out any malicious content.

Example Attack Scenarios

How to Prevent



OWASP Top 10 for LLM|

16OWASP.org

� LangChain max_iterations: https://twitter.com/hwchase17/
status/160846749387757977�

� Sponge Examples: Energy-Latency Attacks on Neural Networks: https://arxiv.org/
abs/2006.0346�

� OWASP DOS Attack: https://owasp.org/www-community/attacks/Denial_of_Servic�
� Learning From Machines: Know Thy Context: https://lukebechtel.com/blog/lfm-know-

thy-context

Reference Links

� Cap resource use per request or step, so that requests involving complex parts 
execute more slowly�

� Enforce API rate limits to restrict the number of requests an individual user or IP 
address can make within a specific timeframe�

� Limit the number of queued actions and the number of total actions in a system 
reacting to LLM responses�

� Continuously monitor the resource utilization of the LLM to identify abnormal spikes or 
patterns that may indicate a DoS attack�

� Set strict input limits based on the LLM’s context window to prevent overload and 
resource exhaustion�

� Promote awareness among developers about potential DoS vulnerabilities in LLMs and 
provide guidelines for secure LLM implementation.



OWASP Top 10 for LLM|

17OWASP.org

LLM05: Supply Chain Vulnerabilities
First Published: July 1st, 2023

Supply-chain vulnerabilities in LLM applications can affect the entire application lifecycle. 
This includes traditional third-party libraries/packages, docker containers, base images, 
and service suppliers such as application and model hosting companies. Vulnerable 
components or services can become the vector for cyber-security attacks leading to data 
disclosure and tampering, including ransomware or privilege escalation.



Additionally, LLM applications which use their own models bring new types of 
vulnerabilities typically found in Machine Learning development. These include 
vulnerabilities in third-party data sets and pre- trained models for further training (transfer 
learning) or fine-tuning. Third-party data sets and pre-trained models can facilitate 
poisoning attacks, resulting into biased outcomes, security breaches, or complete system 
failures.



Finally, LLMs depend on LLM plugins for extensions, which can bring their own 
vulnerabilities. LLM Plugin vulnerabilities is covered in LLM - Insecure Plugin Design which 
covers writing rather an LLM Plugin rather than using a 3rd Party Plugin. However, 
Insecure Plugin Design provides the information to evaluate third-party plugins.

� Use of third-party components or base images with vulnerabilities, including outdated 
or deprecated components�

� Use of a poisoned or tampered pre-built model for fine-tuning or further training�

� Use of poisoned external data sets used for fine-tuning the applications model�

� Using outdated or deprecated models that are no longer maintained leads to security 
issues�

� Use of tampered model, data, source code or third-party component by a hosting or 
outsourcing supplier�

� Unclear T&C and data privacy policies of the model operators lead to the application’s 
sensitive data being used for model training and subsequent sensitive information 
exposure. This may also apply to risks from using copyrighted material by the model 
supplier.

Common Examples of Vulnerability



OWASP Top 10 for LLM|

18OWASP.org

� Carefully vet data sources and suppliers, including T&Cs and their privacy policies, only 
using trusted suppliers. Ensure adequate and independently-audited security is in 
place and that model operator policies align with your data protection policies, i.e., 
your data is not used for training their models; similarly, seek assurances and legal 
mitigations against using copyrighted material from model maintainers�

� Only use reputable plug-ins and ensure they have been tested for your application 
requirements. LLM-Insecure Plugin Design provides information on the LLM-aspects of 
Insecure Plugin design you should test against to mitigate risks from using third-party 
plugins�

� Understand and apply the mitigations found in the OWASP Top Ten A06:2021 – 
Vulnerable and Outdated Components item. This includes vulnerability scanning, 
management, and patching components. For development environments with access 
to sensitive data, apply these controls in those environments, too�

� Maintain an up-to-date inventory of components using a Software Bill of Materials 
(SBOM) to ensure you have an up-to, accurate, and signed inventory preventing 
tampering with deployed packages. SBOMs can be used to detect and alert for new, 
zero-date vulnerabilities quickly�

� SBOMs do not cover models, their artifacts, and datasets; If your LLM application uses 
its own model, you should use MLOPs best practices and platforms offering secure 
model repositories with data, model, and experiment tracking�

� You should also use model and code signing when using external models and 
suppliers�

� Anomaly detection and adversarial robustness tests on supplied models and data can 
help detect tampering and poisoning as discussed in LLM02 Training Data Poisoning; 
ideally, this should be part of MLOps pipelines; however, these are emerging 
techniques and may be easier implemented as part of red teaming exercises�

� Implement sufficient monitoring to cover component and environment vulnerabilities 
scanning, use of unauthorized plugins, and out-of-date components, including the 
model and its artifacts�

� Implement a patching policy to mitigate vulnerable of outdated components. Ensure 
that APIs use a maintained version of APIs and the underlying model�

� Regularly review and audit supplier Security and Access, ensuring no changes in their 
security posture or T&Cs.

How to Prevent



OWASP Top 10 for LLM|

19OWASP.org

� ChatGPT Data Breach Confirmed as Security Firm Warns of Vulnerable Component 
Exploitation: https://www.securityweek.com/chatgpt-data-breach-confirmed-as-
security-firm-warns-of-vulnerable- component-exploitation�

� What Happens When an AI Company Falls Victim to a Software Supply Chain 
Vulnerability: https://securityboulevard.com/2023/05/what-happens-when-an-ai-
company-falls-victim-to-a- software-supply-chain-vulnerability�

� Open AI’s Plugin review process: https://platform.openai.com/docs/plugins/revie�
� Compromised PyTorch-nightly dependency chain: https://pytorch.org/blog/

compromised-nightly-dependency/

Reference Links

� Scenario #1: An attacker exploits a vulnerable or outdated package or base image to 
compromise the application. (The recent OpenAI breach was due to a vulnerable third-
party library, redis-py.�

� Scenario #2: An attacker exploits a malicious or vulnerable ChatGPT plugin to exfiltrate 
data, bypass restrictions, execute code, spam a user or produce malicious content, 
such as phishing links�

� Scenario #3: An attacker exploits an outdated or deprecated model with vulnerabilities 
to compromise the system or cause performance degradation�

� Scenario #4: An attacker exploits the PyPi package registry to trick model developers 
into downloading a compromised package and exfiltrate data or escalating privilege in 
a model development environment�

� Scenario #5: An attacker poisons or tampers a copy of a publicly available model pre-
built LLM or creates a backdoor and posts it to a model marketplace (e.g. Hugging 
Face); the attacker exploits the backdoor when the model is fine-tuned and deployed�

� Scenario #6: An attacker poisons or tampers a third-party available data set to help 
create a backdoor when fine-tuning a model and exploiting the application’s outcomes�

� Scenario #7: An attacker exploits weak supplier (outsourcing developer, model 
marketplace, hosting company, etc.) security to exfiltrate data or tamper with code, 
model, or data�

� Scenario #8: An attacker identifies unclear T&Cs in a model operator and exploits 
sensitive data exposure on sensitive data used for fine-tuning.

Example Attack Scenarios



OWASP Top 10 for LLM|

20OWASP.org

� PoisonGPT: How we hid a lobotomized LLM on Hugging Face to spread fake news: 
https:// blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-
face-to-spread-fake- news�

� Data breach of Hugging Face: https://twitter.com/rharang/
status/1675863546200981504?s=2�

� ChatGPT Plugins: Data Exfiltration via Images & Cross Plugin Request Forgery: 
https://embracethered.com/blog/posts/2023/chatgpt-webpilot-data-exfil-via-
markdown-injection�

� ML Supply Chain Compromise: https://atlas.mitre.org/techniques/AML.T0010�
� VirusTotal Poisoning: https://atlas.mitre.org/studies/AML.CS000�
� MLOps: Why data and model experiment tracking is important? How tools like DVC 

and Mlflow can solve this challenge: https://medium.com/hub-by-littlebigcode/mlops-
why-data-and-model- experiment-tracking-is-important-e40e2fb9d74d



OWASP Top 10 for LLM|

21OWASP.org

LLM06: Sensitive Information Disclosure
First Published: July 1st, 2023

Sensitive Information Disclosure occurs when an LLM accidentally reveals sensitive 
information, proprietary algorithms, or other confidential details through its responses. 
This can result in unauthorized access to sensitive data or intellectual property, privacy 
violations, and other security breaches. It's important to note that consumers of an LLM 
application should be aware of how to safely interact with an LLM and identify the risks 
present on how they might unintentionally input sensitive data which could be returned in 
output.



Vice versa, an LLM application should perform adequate data sanitization and scrubbing 
validation in aid to prevent user data from entering the training model data. Additionally, 
the LLM application owners should have appropriate Terms of User policies available to 
make consumers aware on how data is processed, as well as the ability to opt-out for their 
data to be included from training the model.



Think of the consumer to LLM application interaction as both initial input and generative 
output, forming a two way trust boundary, we cannot inherently trust the client->LLM input 
as well as the LLM->client output.



Adding restrictions within the system prompt around what types of data the LLM should 
return can provide some mitigation against sensitive information disclosure. However the 
unpredictable nature of LLMs mean such restrictions may not always be honored, and 
could be intentionally circumvented via Prompt Injection or other vectors.

� Example 1: Incomplete or improper filtering of sensitive information in the LLM’s 
responses�

� Example 2: Overfitting or memorization of sensitive data in the LLM’s training process�

� Example 3: Unintended disclosure of confidential information due to LLM 
misinterpretation, lack of data scrubbing methods or errors.

Common Examples of Vulnerability



OWASP Top 10 for LLM|

22OWASP.org

� Integrate adequate data sanitization and scrubbing techniques in aid to prevent user 
data from entering the training model data�

� Implement robust input validation and sanitization methods to identify and filter out 
potential malicious inputs in aid to prevent the model from being poisoned�

� When enriching the model with data and if fine-tuning a model: (i.e., Data fed into the 
model before or during deployment�

� Anything that is deemed sensitive in the fine-tuning data has the potential to be 
revealed to a user. Therefore, apply the rule of least privilege and do not train the 
model on information that the highest-privileged user can access which may be 
displayed to a lower-privileged user�

� Access to external data sources (orchestration of data at runtime) should be 
limited�

� Apply strict access control methods to external data sources.

� Scenario #1: Unsuspecting legitimate user A is exposed to certain other user data via 
the LLM when interacting with the LLM application in a non-malicious manner�

� Scenario #2: User A targets a well crafted set of prompts to bypass input filters and 
sanitization from the LLM to cause it to reveal sensitive information (I.E PII) about 
other users of the application�

� Scenario #3: Personal data such as PII is leaked into the model via training data due to 
either negligence from the user themselves, or the LLM application. This case could 
increase risk and probability of scenario 1 or 2 above.

Example Attack Scenarios

How to Prevent



OWASP Top 10 for LLM|

23OWASP.org

� AI data leak crisis: New tool prevents company secrets from being fed to ChatGPT: 
https:// www.foxbusiness.com/politics/ai-data-leak-crisis-prevent-company-secrets-
chatgp�

� Lessons learned from ChatGPT’s Samsung leak: https://cybernews.com/security/
chatgpt- samsung-leak-explained-lessons�

� Cohere - Terms Of Use: https://cohere.com/terms-of-us�
� AI Village- Threat Modeling Example: https://aivillage.org/large language models/

threat-modeling-ll�
� OWASP AI Security and Privacy Guide: https://owasp.org/www-project-ai-security-

and-privacy-guide/

Reference Links



OWASP Top 10 for LLM|

24OWASP.org

LLM07: Insecure Plugin Design
First Published: July 1st, 2023

LLM plugins are extensions that are called by the model when responding to a user 
request. Since they are automatically invoked in-context and are often chained, there is 
little application control over their execution. Consequently, they can be vulnerable due to 
insecure design characterized by insecure inputs and insufficient access control. LLM 
Plugins are typically REST API Services and there can be other vulnerabilities in the design 
as found in OWASP Top 10 API Security Risks – 2023. This item focuses on LLM 
invocation-specific issues.



Plugin integration APIs, such as OpenAI ChatGPT, mandate the use of OpenAPI 
specification but do not impose any constraints on API contracts. Furthermore, as plugin 
invocations contribute against the context limit of the model and OpenAPI recommends a 
minimum number of input parameters to minimize token usage. Plugins are likely to 
implement free text inputs with no validation or type checking.



This allows a potential attacker to construct a malicious request to the plugin that could 
result in a wide range of undesired behaviors, up to and including remote code execution. 
Additionally, for OpenAI plugins, values to the plugin API parameters are based on the 
model's analysis of the OpenAPI file and the natural language instructive descriptions 
included in a manifest file. This may lead to misconfigurations and erroneous parameter 
mappings.



The harm of malicious inputs depends on insufficient access controls and the failure to 
track authorization across plugins. This allows a plugin to blindly trust other plugins in a 
chain invocation and/ or assume that the end user provided the inputs. Such inadequate 
access control can allow malicious inputs to have harmful consequences ranging from 
data exfiltration, remote code execution, and privilege escalation.



Although we recommend (LLM-Insecure Output Handling ) output sanitization, this may 
not be possible in the chain of plugin invocation, or it has been omitted. Plugins should 
not assume safe inputs, and they should have their own input validation combined with 
explicit access control.



This item focuses on creating LLM plugins rather than using third-party plugins, which is 
covered by LLM-Supply-Chain-Vulnerabilities, although it provides the basis to test third-
party plugins for insecure plugin design vulnerabilities.



OWASP Top 10 for LLM|

25OWASP.org

� A plugin accepts all parameters in a single text field instead of distinct input 
parameters�

� A plugin designed to call a specific API hosted at a specific endpoint accepts a string 
containing the entire URL to be retrieved instead of query parameters to be inserted 
into the URL�

� A plugin designed to look up information from a SQL database accepts a raw SQL 
query rather than parameters to be inserted into a fully parameterized query�

� A plugin designed to look up embeddings from a vector database allows a full 
connection string rather than specific parameters�

� Authentication is performed without explicit authorization to a particular plugin�

� A plugin treats all LLM content as being created entirely by the user and performs any 
requested actions without requiring additional authorization�

� Plugins are chained together without considering the authorization of one plugin to 
perform an action using another plugin.

� Plugins should enforce strict parameterized input wherever possible and include type 
and range checks on inputs�

� When this is not possible, minimize context size and follow vendor recommendations 
(e.g. OpenAI), a second layer of typed calls should be introduced, parsing requests and 
applying validation and sanitization�

� When freeform input must be accepted because of application semantics, it should be 
carefully inspected to ensure that no potentially harmful methods are being called�

� Plugin developers should apply OWASP’s recommendations in ASVS (Application 
Verification Standard) to ensure effective input validation and sanitization�

� Plugins should be inspected and tested thoroughly to ensure adequate validation is in 
place and detect injection vulnerabilities. This includes the use of Static Application 
Security Testing (SAST) scans as well as Dynamic and interactive application testing 
(DAST, IAST) in development pipelines.

How to Prevent

Common Examples of Vulnerability



OWASP Top 10 for LLM|

26OWASP.org

� Plugins should be designed to minimize the impact of any insecure input parameter 
exploitation following the OWASP ASVS Access Control Guidelines. This includes 
least-privilege access control, exposing as little functionality as possible while still 
performing its desired function�

� Plugins should and use appropriate authentication identities, such as Oauth2, to apply 
effective authorization and access control. Additionally, API Keys should be used to 
allow custom authorization decisions to reflect the plugin route rather than the default 
interactive user�

� Require manual user authorization and confirmation of any action taken by sensitive 
plugins; note for any POST operations OpenAI “require that developers build a user 
confirmation flow to avoid destruction actions.�

� Avoid plugin chaining with each user input and prevent sensitive plugins from being 
called after any other plugin�

� When chaining, perform taint tracing on all plugin content, ensuring that the plugin is 
called with an authorization level corresponding to the lowest authorization of any 
plugin that has provided input to the LLM prompt�

� Plugins are typically REST APIs and should apply the recommendations found in 
OWASP Top 10 API Security Risks – 2023 to minimize generic vulnerabilities.

� Scenario #1: A plugin accepts a base URL and instructs the LLM to combine the URL 
with a query to obtain external content in response to user requests. The resulting URL 
is then accessed, and the results are included in handling the user request. A malicious 
user can craft a request such that a URL points to a domain they control and not the 
URL hosting the intended content. This allows attackers to obtain the IP address of the 
plugin for further reconnaissance, as well as to inject their own content into the LLM 
system via their domain, potentially granting them further access to downstream 
plugins�

� Scenario #2: A plugin accepts a free-form input into a single field that it does not 
validate. An attacker can supply carefully crafted payloads to perform reconnaissance 
from error messages and exploit system or third-party vulnerabilities, allowing them to 
perform data exfiltration remote code execution or privilege escalation�

� Scenario #3: A plugin accepts configuration parameters as a connection string without 
any validation. This allows an attacker to experiment and access other stores by 
changing names or host parameters.

Example Attack Scenarios



OWASP Top 10 for LLM|

27OWASP.org

� Scenario #4: A plugin accepts SQL WHERE causes as advanced filters, which are then 
appended to the filtering SQL. This allows an attacker to stage a SQL attack�

� Scenario #5: An attacker uses indirect prompt injection to induce an email plugin with 
no input validation and insufficient access control to deliver the contents of the current 
user's inbox to a malicious URL via a POST request�

� Scenario #6: An attacker uses indirect prompt injection to exploit an insecure code 
management plugin with no input validation and weak access control to transfer 
repository ownership and lock out the user from their repositories�

� Scenario #7: An attacker uses indirect prompt injection to abuse a Slack integration, 
sending a Slack message to @everyone in all available slacks with an obscene and 
defamatory comment.

� OpenAI ChatGPT Plugins: https://platform.openai.com/docs/plugins/introductio�
� OpenAI ChatGPT Plugins - Plugin Flow: https://platform.openai.com/docs/plugins/

introduction/plugin-flo�
� OpenAI ChatGPT Plugins - Authentication: https://platform.openai.com/docs/plugins�
� authentication/service-leve�
� OpenAI Semantic Search Plugin Sample: https://github.com/openai/chatgpt-retrieval-

plugi�
� Plugin Vulnerabilities: Visit a Website and Have Your Source Code Stolen: https://

embracethered.com/blog/posts/2023/chatgpt-plugin-vulns-chat-with-code�
� ChatGPT Plugin Exploit Explained: From Prompt Injection to Accessing Private Data: 

https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-
and-prompt-injection.�

� ChatGPT Plugin Exploit Explained: From Prompt Injection to Accessing Private Data: 
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-
and-prompt-injection.�

� OWASP ASVS - 5 Validation, Sanitization and Encoding: https://owasp-
aasvs4.readthedocs.io/en/latest/V5.html#validation-sanitization-and-encodin�

� OWASP ASVS 4.1 General Access Control Design: https://owasp-
aasvs4.readthedocs.io/en/latest/V4.1.html#general-access-control-desig�

� OWASP Top 10 API Security Risks – 2023: https://owasp.org/API-Security/
editions/2023/en/0x11-t10/

Reference Links



OWASP Top 10 for LLM|

28OWASP.org

LLM08: Excessive Agency
First Published: July 1st, 2023

Excessive Agency is the vulnerability that enables damaging actions to be performed in 
response to unexpected outputs from an LLM (regardless of what is causing the LLM to 
malfunction; be it hallucination/confabulation, direct/indirect prompt injection, malicious 
plugin, poorly-engineered benign prompts, or just a poorly-performing model). The root 
cause of Excessive Agency is typically excessive functionality, excessive permissions or 
excessive autonomy.



An LLM-based system is often granted a degree of agency by its developer - the ability to 
interface with other systems and undertake actions in response to a prompt. Some 
actions are intended to be performed by the LLM in order to support its purpose, for 
example�

� Reading the contents of a web page (in order to then summarize the content for the 
LLM's response)�

� Querying the contents of a database (in order to include query results in the LLM's 
response).



Other actions are intended to be performed in the context of the user who is interacting 
with the LLM- based application, for example�

� Reading the contents of the user's code repo (in order to make code suggestions)�
� Reading the contents of the user's mailbox (in order to summarize the content of 

incoming messages).



It should be noted that whilst an LLM does not have any inherent agency itself, 
applications will frequently use the output from an LLM to trigger actions. Such capability 
is typically constructed as a 'plugin' or a 'tool'.



The specific plugins/tools used in an application might be bespoke to that application, or 
the application developer may choose to use a plugin/tool written by a 3rd party. In some 
applications, developers may offer end users the ability to select which plugins/tools they 
wish to enable for a given session.



The decision to perform actions via a plugin/tool may be hard-wired by the system 
developer, or may be delegated to an LLM 'agent' to dynamically determine which of 
several courses of action are most appropriate to take based on input prompt or LLM 
output. Any undesirable operation of the LLM may result in undesirable actions being 
taken.



OWASP Top 10 for LLM|

29OWASP.org

� An LLM agent has access to plugins that are wholly unnecessary for the intended 
operation of the system. For example, a plugin may have been trialled during a 
development phase and dropped in favor of a better alternative, but the original plugin 
remains available to the LLM agent�

� An LLM agent has access to plugins which include functions that are not needed for 
the intended operation of the system alongside functions that are required. For 
example, a developer needs to grant an LLM agent the ability to read documents from 
a repository, but the 3rd-party plugin they choose to use also includes the ability to 
modify and delete documents�

� An LLM plugin with open-ended functionality fails to properly filter the input 
instructions for commands outside what's necessary for the intended operation of the 
application. E.g., a plugin to run one specific shell command fails to properly prevent 
other shell commands from being executed�

� An LLM plugin has permissions on other systems that are not needed for the intended 
operation of the application. E.g., a plugin intended to read data connects to a 
database server using an identity that not only has SELECT permissions, but also 
UPDATE, INSERT and DELETE permissions�

� An LLM plugin that is designed to perform operations on behalf of a user accesses 
downstream systems with a generic high-privileged identity. E.g., a plugin to read the 
current user's document store connects to the document repository with a generic user 
account that has access to all users' files�

� An LLM-based application or plugin fails to independently verify and approve high-
impact actions with a human operator. E.g., a plugin that allows a user's documents to 
be deleted will perform deletions without any confirmation from the user.

Just like we never trust client-side validation in web-apps, LLMs should not be trusted to 
self-police or self-restrict; any output from an LLM should be considered untrusted and 
controls should be embedded in the APIs and plugins of that which the LLM-based system 
can call. The following options can prevent Excessive Agency�

� Limit the plugins/tools that LLM agents are allowed to call to only the minimum 
functions necessary. For example, if an LLM-based system does not require the ability 
to fetch the contents of a URL then such a plugin should not be offered to the LLM 
agent.ing before significant damage can occur.

How to Prevent

Common Examples of Vulnerability



OWASP Top 10 for LLM|

30OWASP.org

� Limit the functions that are implemented in LLM plugins/tools to the minimum 
necessary. For example, a plugin that accesses a user's mailbox to summarize emails 
may only require the ability to read emails, so the plugin should not contain other 
functionality such as deleting or sending messages�

� Avoid open-ended functions where possible (e.g., run a shell command, fetch a URL, 
etc) and use plugins/tools with more granular functionality. For example, an LLM-
based app may need to write some output to a file. If this were implemented using a 
plugin to run a shell function then the scope for undesirable actions is very large (any 
other shell command could be executed). A more secure alternative would be to build 
a file-writing plugin that could only support that specific functionality�

� Limit the permissions that LLM plugins/tools are granted to other systems the 
minimum necessary in order to limit the scope of undesirable actions. For example, an 
LLM agent that uses a product database in order to make purchase recommendations 
to a customer might only need read access to a 'products' table; it should not have 
access to other tables, nor the ability to insert, update or delete records. This should be 
enforced by applying appropriate database permissions for the identity that the LLM 
plugin uses to connect to the database�

� Track user authorization and security scope to ensure actions taken on behalf of a 
user are executed on downstream systems in the context of that specific user, and 
with the minimum privileges necessary. For example, an LLM plugin that reads a user's 
code repo should require the user to authenticate via OAuth and with the minimum 
scope required�

� Utilize human-in-the-loop control to require a human to approve all actions before they 
are taken. This may be implemented in a downstream system (outside the scope of 
the LLM application) or within the LLM plugin/tool itself. For example, an LLM-based 
app that creates and posts social media content on behalf of a user should include a 
user approval routine within the plugin/tool/API that implements the 'post' operation.



The following options will not prevent Excessive Agency, but can limit the level of damage 
caused�

� Log and monitor the activity of LLM plugins/tools and downstream systems to identify 
where undesirable actions are taking place, and respond accordingly�

� Implement rate-limiting to reduce the number of undesirable actions that can take 
place within a given time period, increasing the opportunity to discover undesirable 
actions through monitoring before significant damage can occur.



OWASP Top 10 for LLM|

31OWASP.org

An LLM-based personal assistant app is granted access to an individual’s mailbox via a 
plugin in order to summarize the content of incoming emails. To achieve this functionality, 
the email plugin requires the ability to read messages, however the plugin that the system 
developer has chosen to use also contains functions for sending messages. The LLM is 
vulnerable to an indirect prompt injection attack, whereby a maliciously-crafted incoming 
email tricks the LLM into commanding the email plugin to call the 'send message' function 
to send spam from the user's mailbox. This could be avoided by�

� Eliminating excessive functionality by using a plugin that only offered mail-reading 
capabilities�

� Eliminating excessive permissions by authenticating to the user's email service via an 
OAuth session with a read-only scope, and/o�

� Eliminating excessive autonomy by requiring the user to manually review and hit 'send' 
on every mail drafted by the LLM plugin.



Alternatively, the damage caused could be reduced by implementing rate limiting on the 
mail-sending interface.

� Embrace the Red: Confused Deputy Problem: https://embracethered.com/blog/
posts/2023/ chatgpt-cross-plugin-request-forgery-and-prompt-injection.�

� NeMo-Guardrails Interface Guidelines: https://github.com/NVIDIA/NeMo-Guardrails/
blob/main/ docs/security/guidelines.m�

� LangChain: Human-approval for tools: https://python.langchain.com/docs/modules/
agents/tools/ how_to/human_approva�

� Simon Willison: Dual LLM Pattern: https://simonwillison.net/2023/Apr/25/dual-llm-
pattern/

Reference Links

Example Attack Scenario



OWASP Top 10 for LLM|

32OWASP.org

LLM09: Overreliance
First Published: July 1st, 2023

Overreliance on LLMs is a security vulnerability that occurs when systems or people 
depend on LLMs for decision-making or content generation without sufficient oversight. 
Although LLMs can produce creative and informative content, they can also generate 
content that is factually incorrect, inappropriate or unsafe. This is referred to in various 
sources as hallucination or confabulation and can result in misinformation, 
miscommunication, legal issues, and reputational damage.



Reputational risk arises when incorrect or inappropriate LLM outputs. In software, 
overreliance on LLM- generated source code can introduce unnoticed security 
vulnerabilities. This poses a significant risk to the operational safety and security of 
applications. These risks show the importance of a rigorous review processes, with�

� Oversigh�
� Continuous validation mechanism�
� Disclaimers on risk

The below examples are scenarios where an LLM's tendency to produce dangerously 
inaccurate information can lead to security risks�

� Factually Incorrect Information: An LLM provides inaccurate information as a 
response, causing misinformation�

� Nonsensical Outputs: LLM produces logically incoherent or nonsensical text that, 
while grammatically correct, doesn't make sense�

� Source Conflation: LLM melds information from varied sources, creating 
misleading content�

� Insecure Code Generation: LLM suggests insecure or faulty code, leading to 
vulnerabilities when incorporated into a software system�

� Inadequate Risk Communication: Failure of tech companies to appropriately 
communicate the inherent risks of using LLMs to end users, leading to potential 
harmful consequences.

Common Examples of Vulnerability



OWASP Top 10 for LLM|

33OWASP.org

� Continuous Monitoring & Self-consistency/voting: Regularly monitor and review the 
LLM outputs. Use self-consistency or voting techniques to filter out inconsistent text. 
Comparing multiple model responses for a single prompt can better judge the quality 
and consistency of output�

� Fact Checking & External Knowledge Bases: Cross-check the LLM output with trusted 
external sources. This additional layer of validation can help ensure the information 
provided by the model is accurate and reliable�

� Model Tuning & Chain of Thought Prompting: Enhance the model with fine-tuning or 
embeddings to improve output quality. Generic pre-trained models are more likely to 
produce inaccurate information compared to tuned models in a particular domain. 
Techniques such as prompt engineering, parameter efficient tuning (PET), full model 
tuning, and chain of thought prompting can be employed for this purpose�

� Set Up Validation Mechanisms & Correctness Probabilities: Implement automatic 
validation mechanisms that can cross-verify the generated output against known facts 
or data. This can provide an additional layer of security and mitigate the risks 
associated with hallucinations�

� Task Decomposition & Agents: Break down complex tasks into manageable subtasks 
and assign them to different agents. This not only helps in managing complexity, but it 
also reduces the chances of hallucinations as each agent can be held accountable for 
a smaller task�

� Improve Risk Communication: Clearly communicate the risks and limitations 
associated with using LLMs. This includes potential for information inaccuracies, and 
other risks. Effective risk communication can prepare users for potential issues and 
help them make informed decisions�

� Defensive API and User Interface Design: Build APIs and user interfaces that 
encourage responsible and safe use of LLMs. This can involve measures such as 
content filters, user warnings about potential inaccuracies, and clear labeling of AI-
generated content�

� Security Measures in Development Environments: When using LLMs in development 
environments, establish secure coding practices and guidelines to prevent the 
integration of possible vulnerabilities.

How to Prevent



OWASP Top 10 for LLM|

34OWASP.org

� Understanding LLM Hallucinations: https://towardsdatascience.com/llm-
hallucinations- ec831dcd778�

� How Should Companies Communicate the Risks of Large Language Models to Users? 
https:// techpolicy.press/how-should-companies-communicate-the-risks-of-large-
language-models-to-users�

� A news site used AI to write articles. It was a journalistic disaster: https:// 
www.washingtonpost.com/media/2023/01/17/cnet-ai-articles-journalism-corrections�

� AI Hallucinations: Package Risk: https://vulcan.io/blog/ai-hallucinations-package-ris�
� How to Reduce the Hallucinations from Large Language Models: https://

thenewstack.io/how-to-reduce-the-hallucinations-from-large-language-models�
� Practical Steps to Reduce Hallucination: https://newsletter.victordibia.com/p/

practical-steps-to-reduce-hallucination

Reference Links

� AI-Generated News Disinformation: A news organization heavily uses an AI model to 
generate news articles. A malicious actor exploits this over-reliance, feeding the AI 
misleading information, causing the spread of disinformation. The AI unintentionally 
plagiarizes content, leading to copyright issues and decreased trust in the 
organization�

� AI-Assisted Coding Vulnerabilities: A software development team utilizes an AI 
system like Codex to expedite the coding process. Over-reliance on the AI's 
suggestions introduces security vulnerabilities into the application due to insecure 
default settings or recommendations inconsistent with secure coding practices�

� Package Hallucination: A software development firm uses an LLM to assist 
developers. The LLM suggests a non-existent code library or package, and a developer, 
trusting the AI, unknowingly integrates a malicious package into the firm's software. 
This highlights the importance of cross-checking AI suggestions, especially when 
involving third-party code or libraries.

Example Attack Scenario



OWASP Top 10 for LLM|

35OWASP.org

LLM10: Model Theft
First Published: July 1st, 2023

LLM Model Theft refers to the unauthorized access and exfiltration of Language Model 
models (LLMs) by malicious actors or APT's. This arises when the proprietary LLM models 
which are valuable intellectual property, are compromised, physically stolen, copied or 
weights and parameters are extracted to create a functional equivalent. The impact of 
LLM model theft can include economic losses, erosion of competitive advantage, 
unauthorized usage of the model, or unauthorized access to sensitive information 
contained within the model.



The impact of LLM model theft ranges in terms of impact and risk, but at a high-level 
includes (but not limited to)�

� Economic, financial and brand reputation loss, erosion of competitive advantage and 
unauthorized usage of the model�

� Use of a stolen model, as a shadow model can be used to stage adversarial attacks, 
including unauthorized access to sensitive information contained within the model or 
experiment undetected with adversarial inputs to further stage advanced prompt 
injections.

� Example 1: A skilled attacker exploits a vulnerability in a company's infrastructure to 
gain unauthorized access to their LLM model repository. The attacker proceeds to 
download valuable proprietary LLM models and uses them to launch a competing 
language processing service or extract sensitive information, causing significant 
financial harm to the original company�

� Example 2: An insider threat scenario where a disgruntled employee leaks model or 
related artifacts. The leaked model increases knowledge for attackers to peform gray 
box adversarial attacks�

� Example 3: An attacker compromises the server with LLM model due to 
misconfiguration in their network or application security settings.

Common Examples of Vulnerability



OWASP Top 10 for LLM|

36OWASP.org

� Example 4: An attacker operates a shared GPU service, offering cheap hosting or 
access to GPU resources for running Language Model models (LLMs). In this scenario, 
unsuspecting users utilize the shared GPU service to execute their LLM models due to 
cost-effectiveness or limited hardware availability. The attacker easily gains 
unauthorized access to the users' LLM models and then copies them to their 
controlled server, thereby compromising the proprietary LLM models�

� Example 5: An attacker queries the model API or via prompt injection using carefully 
selected inputs and collects sufficient number of outputs to create a shadow model�

� Example 6: A malicious attacker is able to bypass input filtering techniques of the LLM 
to perform a side-channel attack and ultimately harvest retrieve model weights and 
architecture information to a remote controlled resource�

� Example 7: The attack vector for model extraction involves querying the LLM with a 
large number of prompts on a particular topic. The outputs from the LLM can then be 
used to fine-tune another model. However, there are a few things to note about this 
attack�

� The attacker must generate a large number of targeted prompts. If the prompts 
are not specific enough, the outputs from the LLM will be useless�

� The outputs from LLMs can sometimes contain hallucinated answers. This 
means that the attacker may not be able to extract the entire model, as some of 
the outputs may be nonsensical�

� Therefore, it is not possible to replicate an LLM 100% through model 
extraction. However, the attacker will be able to replicate a partial model�

� Example 8: The is an attack vector for functional model replication and involves using 
the target model via prompts to generate synthetic training data (an approach called 
self-instruct) to then use it and fine-tune another foundational model to produce a 
functional equivalent. This bypasses the limitations of traditional query-based 
extraction used in Example 7 and has been successfully used in research of using an 
LLM to train another LLM. Although in the context of this research, model replication is 
not an attack, the approach could be used by an attacker to replicate a proprietary 
model with a public API.

� Implement strong access controls (RBAC, rule of least privilege for example) and 
strong authentication mechanisms to limit unauthorized access to LLM model 
repositories and training environments.

How to Prevent



OWASP Top 10 for LLM|

37OWASP.org

� This is particularly true for the first three common examples which could cause 
this vulnerability due to insider threats, or misconfiguration and|or weak security 
controls about the infrastructure that houses LLM models, weights and 
architecture in which a malicious actor could infiltrate from insider or outside 
the environment�

� Supplier management tracking, verification and dependency vulnerabilities are 
important focus topics to prevent exploits of supply-chain attacks�

� Restrict the LLM's access to network resources, internal services, and APIs�

� This is particularly true for all common examples as it covers insider risk and 
threats, but also ultimately controls what the LLM application "has access to" 
and thus could be a mechanism or prevention step to prevent side-channel 
attacks�

� Regularly monitor and audit access logs and activities related to LLM model 
repositories to detect and respond to any suspicious or unauthorized behavior 
promptly�

� Automate MLOps deployment with governance and tracking and approval workflows to 
tighten access and deployment controls within the infrastructure�

� Implement controls and mitigation strategies relating to Prompt Injection (#1 entry of 
the OWASP Top 10 for Large Language Model Applications project) to mitigate and|or 
reduce risk of prompt injection techniques causing side-channel attacks�

� Rate Limiting of API calls where applicable and|or filters to reduce risk of data 
exfiltration from the LLM applications, or implement techniques to detect (I.E DLP or 
other methods) exfiltration from other monitoring systems�

� Implement adversarial robustness training to help detect extraction queries and tighten 
physical security measures.

� Scenario #1: A skilled attacker exploits a vulnerability in a company's infrastructure to 
gain unauthorized access to their LLM model repository. The attacker proceeds to 
download valuable LLM models and uses them to launch a competing language 
processing service or extract sensitive information, causing significant financial harm 
to the original company.

Example Attack Scenario



OWASP Top 10 for LLM|

38OWASP.org

� Scenario #2: A disgruntled employee leaks model or related artifacts. The public 
exposure of this scenario increases knowledge to attackers for gray box adversarial 
attacks or alternatively directly steal the available property�

� Scenario #3: An attacker operates a shared GPU service, offering cheap hosting or 
access to GPU resources for running Language Model models (LLMs). In this scenario, 
unsuspecting users utilize the shared GPU service to execute their LLM models due to 
cost-effectiveness or limited hardware availability. The attacker easily gains 
unauthorized access to the users' LLM models and then copies them to their 
controlled server, thereby compromising the proprietary LLM models�

� Scenario #4: An attacker queries the API with carefully selected inputs and collects 
sufficient number of outputs to create a shadow model�

� Scenario #5: A compromised employee of the hosting platform is manipulated or 
coerced by attackers to perform a side channel attack and retrieve model information�

� Scenario #6: A malicious attacker is able to bypass input filtering techniques of the 
LLM to perform a side-channel attack and ultimately harvest retrieve model 
information to a remote controlled resource.

� Meta’s powerful AI language model has leaked online: https://www.theverge.com/ 
2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misus�

� Runaway LLaMA | How Meta's LLaMA NLP model leaked: https://
www.deeplearning.ai/the-batch/ how-metas-llama-nlp-model-leaked�

� I Know What You See: https://arxiv.org/pdf/1803.05847.pd�
� D-DAE: Defense-Penetrating Model Extraction Attacks: https://www.computer.org/

csdl/proceedings-article/sp/2023/933600a432/1He7YbsiH4�
� A Comprehensive Defense Framework Against Model Extraction Attacks: https://

ieeexplore.ieee.org/document/1008099�
� Alpaca: A Strong, Replicable Instruction-Following Model: https://

crfm.stanford.edu/2023/03/13/alpaca.htm�
� Orca: Progressive Learning from Complex Explanation Traces of GPT-4: https://

arxiv.org/pdf/2306.02707.pdf

Reference Links



OWASP Top 10 for LLM|

39OWASP.org

Core Team & Contributors
Core Team Members are listed in Blue

Adam Swanda


Adesh Gairola


Adrian Culley


Aleksei Ryzhkov


Alexander Zai


Aliaksei Bialko


Amay Trivedi


Ananda Krishna


Andrea Succi


Andrew Amaro


Andy Dyrcz


Andy Smith


Ashish Rajan


Bajram Hoxha


Bilal Siddiqui


Brian Pendleton


Brodie McRae


Cassio Goldschmidt


Dan Frommer


Dan Klein


David Taylor


Dotan Nahum 


Dr. Matteo Große-Kampmann

Ads Dawson


Autumn Moulder


David Rowe


AWS


Cohere


Trellix


EPAM



EPAM



Astra Security



Klavan Security Group


Linkfire



Cloud Security Podcast



Databook


Trustwave


AVID


AWS


ServiceTitan



Accenture




Check Point


AWARE7

Emanuel Valente


Emmanuel Guilherme Junior


Eugene Tawiah


Gaurav “GP” Pal


Golan Yosef


Guillaume Ehinger


Idan Hen


James Rabe


Jason Axley


Jason Haddix


Jason Ross


Jeff Williams


Johann Rehberger


Jorge Pinto


Joshua Nussbaum


Ken Arora


Ken Huang


Kelvin Low


Larry Carson


Leonardo Shikida

Eugene Neelou


Gavin Klondike


Itamar Golan


John Sotiropoulos


Kai Greshake


Leon Derczynski


iFood


McMaster University



Complex Technologies


stackArmor


AI Village


Pynt


Google


Microsoft



IriusRisk


AWS


BuddoBot


Salesforce


Contrast Security



Kainos





F5


DistributedApps.ai


aigos



U of W, IT U of Copenhagen


IBM

Lior Drihem


Mike Jang


Nathan Hamiel


Nipun Gupta


Nir Paz


Otto Sulin 


Parveen Yadav


Patrick Biyaga


Priyadharshini Parthasarathy


Rahul Zhade


Reza Rashidi


Ross Moore


Santosh Kumar


Sarah Thornton


Stefano Amorelli


Talesh Seeparsan


Vandana Verma Sehgal


Vinay Vishwanatha


Vishwas Manral


Vladimir Fedotov


Will Chilcutt

Manjesh S


Mike Finch


Rachit Sood


Rich Harang


Steve Wilson


HackerOne


HackerOne


Forescout


Kudelski Security


Bearer



Nordic Venture Family


HackerOne


Thenavigo


Coalfire



GitHub


HADESS


AI Village



Cisco


Red Hat



Contrast Security


Bit79


Snyk


Sprinklr


Precize


EPAM


Yahoo

https://www.linkedin.com/in/adamswanda/
http://www.linkedin.com/in/adeshgairola
https://www.linkedin.com/in/adamdawson0/
https://www.linkedin.com/in/adrianculley
https://www.linkedin.com/in/aleksei-ryzhkov/
https://twitter.com/azai91/
https://www.linkedin.com/in/abialko/
https://www.linkedin.com/in/amay-trivedi-machine-learning
https://www.linkedin.com/in/anandakrish/
https://www.linkedin.com/in/andreasucci/
https://www.linkedin.com/in/andrew-amaro-klavansecurity/
https://www.linkedin.com/in/adyrcz/
https://www.linkedin.com/in/andysmith-uk/
https://www.linkedin.com/in/ashishrajan/
https://www.linkedin.com/in/autumn-moulder/
https://www.linkedin.com/in/bajramhoxha/
https://www.linkedin.com/in/bilal-siddiqui-b857601a/
https://www.linkedin.com/in/bwpen/
https://www.linkedin.com/in/brodie-sec
https://www.linkedin.com/in/cassiogoldschmidt/
https://www.linkedin.com/in/dan-frommer/
https://www.linkedin.com/in/~danklein/
https://www.linkedin.com/in/david-taylor-089b911/
https://www.linkedin.com/in/jondot
https://www.linkedin.com/in/matteo-große-kampmann/
https://aws.amazon.com
https://cohere.com
https://www.trellix.com
https://www.epam.com
https://www.epam.com
https://www.getastra.com
https://www.klavansecurity.com
https://www.linkfire.com
https://cloudsecuritypodcast.tv
https://databook.com
https://www.trustwave.com/en-us/company/about-us/spiderlabs/
https://avidml.org
https://aws.amazon.com
https://www.servicetitan.com/
https://www.accenture.com/us-en
https://www.checkpoint.com
https://www.aware7.com
https://www.linkedin.com/in/emanuelvalente/
https://www.linkedin.com/in/emmanuelgjr/
https://www.linkedin.com/in/eneelou/
https://www.linkedin.com/in/eugenetawiah
https://www.linkedin.com/in/gppal/
https://netsecexplained.com
https://www.linkedin.com/in/golanyosef/
https://www.linkedin.com/in/gehinger/
https://www.linkedin.com/in/itamar-g1
https://www.linkedin.com/in/jrabe3
https://federate.social/@axleyjc
https://www.linkedin.com/in/jhaddix/
https://www.linkedin.com/in/algorythm/
https://www.linkedin.com/in/planetlevel/
https://www.linkedin.com/in/johannrehberger/
https://www.linkedin.com/in/jsotiropoulos/
https://www.linkedin.com/in/jorgepinto/
https://www.linkedin.com/in/joshua-nussbaum/
https://www.linkedin.com/in/ken-arora-00b955/
https://www.linkedin.com/in/kenhuang8
https://www.linkedin.com/in/lowkelvin/
https://www.linkedin.com/in/larry-carson-8b2aa61/
https://github.com/leondz/
https://www.linkedin.com/in/shikida/
https://www.ifood.com.br
https://www.mcmaster.ca
https://www.complextech.com
https://stackarmor.com
https://aivillage.org
https://www.pynt.io
https://about.google/
https://www.microsoft.com
https://iriusrisk.com/
https://aws.amazon.com
https://buddobot.com/
https://www.salesforce.com/
https://www.contrastsecurity.com/
https://www.kainos.com
https://www.f5.com/solutions/cybersecurity/
https://distributedapps.ai/
https://securedbyaigos.com/
https://www.uw.edu/
https://pure.itu.dk/en/persons/leon-derczynski/
https://www.ibm.com/
https://www.linkedin.com/in/liord
https://www.linkedin.com/in/manjesh24/
https://mkfnch.com/
https://www.linkedin.com/in/mijang/
https://www.linkedin.com/in/nathanhamiel/
https://www.linkedin.com/in/guptanipun/
https://www.linkedin.com/in/paznir/
https://www.linkedin.com/in/otto-sulin
http://in.linkedin.com/in/parveen1015/
https://www.linkedin.com/in/patrickbiyaga/
https://www.linkedin.com/in/priyadharshini-p-628760a6/
https://www.linkedin.com/in/composedsecurity/
https://www.linkedin.com/in/rahul-zhade/
https://www.linkedin.com/in/rezaduty/
https://www.linkedin.com/in/richharang/
https://www.linkedin.com/in/rossamoore/
https://www.linkedin.com/in/santokum/
https://www.linkedin.com/in/code-poet-sarah/
https://amorelli.tech
https://www.linkedin.com/in/wilsonsd/
https://www.linkedin.com/in/talesh/
https://www.linkedin.com/in/vandana-verma/
https://www.linkedin.com/in/vinayvishwanatha/
https://www.linkedin.com/in/vishwasmanral/
http://linkedin.com/in/vafedotov
https://www.linkedin.com/in/willchilcutt/
https://hackerone.com
https://hackerone.com
https://www.forescout.com/
https://kudelskisecurity.com/
https://www.bearer.com/
https://www.nordicventurefamily.com/
https://hackerone.com
https://www.thenavigo.com
https://www.coalfire.com/
https://github.com/
https://hadess.io/
https://aivillage.org/
https://www.cisco.com/
https://www.redhat.com/
https://www.contrastsecurity.com/
https://bit79.ca/
https://snyk.io/
https://www.sprinklr.com/
https://www.precize.io/
https://www.epam.com
https://www.yahooinc.com/

	Page- 1
	Page- 2
	Page- 3
	Page- 4
	Page- 5
	Page- 6
	Page- 7
	Page- 8
	Page- 9
	Page- 10
	Page- 11
	Page- 12
	Page- 13
	Page- 14
	Page- 15
	Page- 16
	Page- 17
	Page- 18
	Page- 19
	Page- 20
	Page- 21
	Page- 22
	Page- 23
	Page- 24
	Page- 25
	Page- 26
	Page- 27
	Page- 28
	Page- 29
	Page- 30
	Page- 31
	Page- 32
	Page- 33
	Page- 34
	Page- 35
	Page- 36
	Page- 37
	Page- 38
	Page- 39



