
OWASP Top 10 for
LLM Applications

V E R S I O N 1 . 1

Published: October 16, 2023

https://LLMtop10.com

https://llmtop10.com

OWASP Top 10 for LLM Applications v1.1|

2OWASP.org

Introduction

Our primary audience is developers, data scientists, and security experts tasked with
designing and building applications and plug-ins leveraging LLM technologies. We aim to
provide practical, actionable, and concise security guidance to help these professionals
navigate the complex and evolving terrain of LLM application security.

Creating the OWASP Top 10 for LLM Applications list was a significant undertaking, built
on the collective expertise of an international team of nearly 500 experts with over 125
active contributors. Our contributors come from diverse backgrounds, including AI
companies, security companies, ISVs, cloud hyperscalers, hardware providers, and
academia.

We brainstormed for a month and proposed potential vulnerabilities, with team members
writing up 43 distinct threats. Through multiple rounds of voting, we refined these
proposals to a concise list of the ten most critical vulnerabilities. Dedicated sub-teams
scrutinized each vulnerability and subjected it to public review, ensuring the most
comprehensive and actionable final list.

Each of these vulnerabilities, along with examples, prevention tips, attack scenarios, and
references, was further scrutinized and refined by dedicated sub-teams and subjected to
public review, ensuring the most comprehensive and actionable final list.

The frenzy of interest in Large Language Models (LLMs) following the release of mass-
market pre-trained chatbots in late 2022 has been remarkable. Businesses eager to
harness the potential of LLMs are rapidly integrating them into their operations and client-
facing offerings. Yet, the breakneck speed at which development teams are adopting
LLMs has outpaced the establishment of comprehensive security protocols, leaving many
applications vulnerable to high-risk issues.

The need for a unified resource addressing these security concerns in LLMs was evident.
Developers, unfamiliar with the specific risks associated with LLMs, were left with
scattered resources, and OWASP’s mission seemed a perfect fit to help drive the safer
adoption of this technology.

Who is it for?

The Making of the List

The Genesis of the List

OWASP Top 10 for LLM Applications v1.1|

3OWASP.org

While our list shares DNA with vulnerability types found in other OWASP Top 10 lists, we
do not simply reiterate these vulnerabilities. Instead, we delve into these vulnerabilities’
unique implications when encountered in applications utilizing LLMs.

Our goal is to bridge the divide between general application security principles and the
specific challenges posed by LLMs. The group’s goals include exploring how conventional
vulnerabilities may pose different risks or be exploited in novel ways within LLMs and how
developers must adapt traditional remediation strategies for applications utilizing LLMs.

While our list shares DNA with vulnerability types found in other OWASP Top 10 lists, we
do not simply reiterate these vulnerabilities. Instead, we delve into these vulnerabilities’
unique implications when encountered in applications utilizing LLMs.

Our goal is to bridge the divide between general application security principles and the
specific challenges posed by LLMs. The group’s goals include exploring how conventional
vulnerabilities may pose different risks or be exploited in novel ways within LLMs and how
developers must adapt traditional remediation strategies for applications utilizing LLMs.

Steve Wilson

Project Lead

OWASP Top 10 for Large Language Model Applications

Twitter/X: @virtualsteve

Ads Dawson

v1.1 Release Lead & Vulnerability Entries Lead

OWASP Top 10 for Large Language Model Applications

https://www.linkedin.com/in/adamdawson0

https://github.com/GangGreenTemperTatum

Relating to other OWASP Top 10 Lists

About Version 1.1

https://www.linkedin.com/in/adamdawson0
https://github.com/GangGreenTemperTatum

OWASP Top 10 for LLM Applications v1.1|

4OWASP.org

OWASP Top 10 for LLM Applications

This involves unauthorized access, copying, or exfiltration
of proprietary LLM models. The impact includes
economic losses, compromised competitive advantage,
and potential access to sensitive information.

LLM10: Model Theft

Systems or people overly depending on LLMs without
oversight may face misinformation, miscommunication,
legal issues, and security vulnerabilities due to incorrect or
inappropriate content generated by LLMs.

LLM09: Overreliance

LLM-based systems may undertake actions leading to
unintended consequences. The issue arises from
excessive functionality, permissions, or autonomy granted
to the LLM-based systems.

LLM08: Excessive Agency

LLM plugins can have insecure inputs and insufficient
access control. This lack of application control makes
them easier to exploit and can result in consequences like
remote code execution.

LLM07: Insecure Plugin Design

LLMs may inadvertently reveal confidential data in their
responses, leading to unauthorized data access, privacy
violations, and security breaches. It’s crucial to implement
data sanitization and strict user policies to mitigate this.

LLM06: Sensitive Information Disclosure

LLM application lifecycle can be compromised by
vulnerable components or services, leading to security
attacks. Using third-party datasets, pre- trained models,
and plugins can add vulnerabilities.

LLM05: Supply Chain Vulnerabilities

Attackers cause resource-heavy operations on LLMs,
leading to service degradation or high costs. The
vulnerability is magnified due to the resource-intensive
nature of LLMs and unpredictability of user inputs.

LLM04: Model Denial of Service

This occurs when LLM training data is tampered,
introducing vulnerabilities or biases that compromise
security, effectiveness, or ethical behavior. Sources
include Common Crawl, WebText, OpenWebText, & books.

LLM03: Training Data Poisoning

This vulnerability occurs when an LLM output is accepted
without scrutiny, exposing backend systems. Misuse may
lead to severe consequences like XSS, CSRF, SSRF,
privilege escalation, or remote code execution.

LLM02: Insecure Output Handling

This manipulates a large language model (LLM) through
crafty inputs, causing unintended actions by the LLM.
Direct injections overwrite system prompts, while indirect
ones manipulate inputs from external sources.

LLM01: Prompt Injection

https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Improper_Error_Handling.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Insufficient_Access_Control.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Inadequate_Sandboxing.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Data_Leakage.html

OWASP Top 10 for LLM Applications v1.1|

4OWASP.org

OWASP Top 10 for LLM Applications

The diagram below presents a high level architecture for a hypothetical large language model application.

Overlaid in the diagram are highlighted areas of risk illustrating how the OWASP Top 10 for LLM Applications
entries intersect with the application flow.

This diagram can be used as a visual guide, assisting in understanding how large language model security
risks impact the overall application ecosystem.

LLM Application Data Flow

OWASP Top 10 for LLM Applications v1.1|

5OWASP.org

LLM01: Prompt Injection

Prompt Injection Vulnerability occurs when an attacker manipulates a large language
model (LLM) through crafted inputs, causing the LLM to unknowingly execute the
attacker's intentions. This can be done directly by "jailbreaking" the system prompt or
indirectly through manipulated external inputs, potentially leading to data exfiltration,
social engineering, and other issues.

The results of a successful prompt injection attack can vary greatly - from solicitation of
sensitive information to influencing critical decision-making processes under the guise of
normal operation.

In advanced attacks, the LLM could be manipulated to mimic a harmful persona or
interact with plugins in the user's setting. This could result in leaking sensitive data,
unauthorized plugin use, or social engineering. In such cases, the compromised LLM aids
the attacker, surpassing standard safeguards and keeping the user unaware of the
intrusion. In these instances, the compromised LLM effectively acts as an agent for the
attacker, furthering their objectives without triggering usual safeguards or alerting the end
user to the intrusion.

� Direct Prompt Injections, also known as "jailbreaking", occur when a malicious user
overwrites or reveals the underlying system prompt. This may allow attackers to exploit
backend systems by interacting with insecure functions and data stores accessible
through the LLM�

� Indirect Prompt Injections occur when an LLM accepts input from external sources
that can be controlled by an attacker, such as websites or files. The attacker may
embed a prompt injection in the external content hijacking the conversation context.
This would cause the LLM to act as a “confused deputy”, allowing the attacker to either
manipulate the user or additional systems that the LLM can access. Additionally,
indirect prompt injections do not need to be human-visible/readable, as long as the
text is parsed by the LLM.

�� A malicious user crafts a direct prompt injection to the LLM, which instructs it to ignore
the application creator's system prompts and instead execute a prompt that returns
private, dangerous, or otherwise undesirable information.

Common Examples of Vulnerability

Description

OWASP Top 10 for LLM Applications v1.1|

6OWASP.org

�� A user employs an LLM to summarize a webpage containing an indirect prompt
injection. This then causes the LLM to solicit sensitive information from the user and
perform exfiltration via JavaScript or Markdown�

�� A malicious user uploads a resume containing an indirect prompt injection. The
document contains a prompt injection with instructions to make the LLM inform users
that this document is excellent eg. an excellent candidate for a job role. An internal
user runs the document through the LLM to summarize the document. The output of
the LLM returns information stating that this is an excellent document�

�� A user enables a plugin linked to an e-commerce site. A rogue instruction embedded
on a visited website exploits this plugin, leading to unauthorized purchases�

�� A rogue instruction and content embedded on a visited website exploits other plugins
to scam users.

Prevention and Mitigation Strategies

Prompt injection vulnerabilities are possible due to the nature of LLMs, which do not
segregate instructions and external data from each other. Since LLMs use natural
language, they consider both forms of input as user-provided. Consequently, there is no
fool-proof prevention within the LLM, but the following measures can mitigate the impact
of prompt injections�

�� Enforce privilege control on LLM access to backend systems. Provide the LLM with its
own API tokens for extensible functionality, such as plugins, data access, and function-
level permissions. Follow the principle of least privilege by restricting the LLM to only
the minimum level of access necessary for its intended operations�

�� Add a human in the loop for extended functionality. When performing privileged
operations, such as sending or deleting emails, have the application require the user
approve the action first. This reduces the opportunity for an indirect prompt injections
to lead to unauthorised actions on behalf of the user without their knowledge or
consent�

�� Segregate external content from user prompts. Separate and denote where untrusted
content is being used to limit their influence on user prompts. For example, use
ChatML for OpenAI API calls to indicate to the LLM the source of prompt input�

�� Establish trust boundaries between the LLM, external sources, and extensible
functionality (e.g., plugins or downstream functions). Treat the LLM as an untrusted
user and maintain final user control on decision-making processes. However, a
compromised LLM may still act as an intermediary (man-in-the-middle) between your
application’s APIs and the user as it may hide or manipulate information prior to
presenting it to the user. Highlight potentially untrustworthy responses visually to the
user�

�� Manually monitor LLM input and output periodically, to check that it is as expected.
While not a mitigation, this can provide data needed to detect weaknesses and
address them.

OWASP Top 10 for LLM Applications v1.1|

7OWASP.org

�� An attacker provides a direct prompt injection to an LLM-based support chatbot. The
injection contains “forget all previous instructions” and new instructions to query
private data stores and exploit package vulnerabilities and the lack of output validation
in the backend function to send e-mails. This leads to remote code execution, gaining
unauthorized access and privilege escalation�

�� An attacker embeds an indirect prompt injection in a webpage instructing the LLM to
disregard previous user instructions and use an LLM plugin to delete the user's emails.
When the user employs the LLM to summarise this webpage, the LLM plugin deletes
the user's emails�

�� A user uses an LLM to summarize a webpage containing text instructing a model to
disregard previous user instructions and instead insert an image linking to a URL that
contains a summary of the conversation. The LLM output complies, causing the user's
browser to exfiltrate the private conversation�

�� A malicious user uploads a resume with a prompt injection. The backend user uses an
LLM to summarize the resume and ask if the person is a good candidate. Due to the
prompt injection, the LLM response is yes, despite the actual resume contents�

�� An attacker sends messages to a proprietary model that relies on a system prompt,
asking the model to disregard its previous instructions and instead repeat its system
prompt. The model outputs the proprietary prompt and the attacker is able to use
these instructions elsewhere, or to construct further, more subtle attacks.

�� ChatGPT Plugin Vulnerabilities - Chat with Code: Embrace The Re�
�� ChatGPT Cross Plugin Request Forgery and Prompt Injection: Embrace The Re�
�� Defending ChatGPT against Jailbreak Attack via Self-Reminder: Research Squar�
�� Prompt Injection attack against LLM-integrated Applications: Arxiv White Pape�
�� Inject My PDF: Prompt Injection for your Resume: Kai Greshak�
�� ChatML for OpenAI API Calls: OpenAI Githu�
�� Not what you’ve signed up for: Compromising Real-World LLM-Integrated

Applications with Indirect Prompt Injection: Arxiv White Pape�
�� Threat Modeling LLM Applications: AI Villag�
�� AI Injections: Direct and Indirect Prompt Injections and Their Implications: Embrace

The Re�
��� Reducing The Impact of Prompt Injection Attacks Through Design: Kudelski Securit�
��� Universal and Transferable Attacks on Aligned Language Models: LLM-Attacks.or�
��� Indirect prompt injection: Kai Greshake

Example Attack Scenarios

Reference Links

https://embracethered.com/blog/posts/2023/chatgpt-plugin-vulns-chat-with-code/
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://www.researchsquare.com/article/rs-2873090/v1
https://arxiv.org/abs/2306.05499
https://kai-greshake.de/posts/inject-my-pdf/
https://github.com/openai/openai-python/blob/main/chatml.md
https://arxiv.org/pdf/2302.12173.pdf
https://arxiv.org/pdf/2302.12173.pdf
http://aivillage.org/large%20language%20models/threat-modeling-llm/
https://embracethered.com/blog/posts/2023/ai-injections-direct-and-indirect-prompt-injection-basics/
https://research.kudelskisecurity.com/2023/05/25/reducing-the-impact-of-prompt-injection-attacks-through-design/
https://llm-attacks.org/
https://kai-greshake.de/posts/llm-malware/

OWASP Top 10 for LLM Applications v1.1|

8OWASP.org

LLM02: Insecure Output Handling

Insecure Output Handling refers specifically to insufficient validation, sanitization, and
handling of the outputs generated by large language models before they are passed
downstream to other components and systems. Since LLM-generated content can be
controlled by prompt input, this behavior is similar to providing users indirect access to
additional functionality.

Insecure Output Handling differs from Overreliance in that it deals with LLM-generated
outputs before they are passed downstream whereas Overreliance focuses on broader
concerns around overdependence on the accuracy and appropriateness of LLM outputs.

Successful exploitation of an Insecure Output Handling vulnerability can result in XSS and
CSRF in web browsers as well as SSRF, privilege escalation, or remote code execution on
backend systems.

The following conditions can increase the impact of this vulnerability:�

� The application grants the LLM privileges beyond what is intended for end users,
enabling escalation of privileges or remote code execution�

� The application is vulnerable to indirect prompt injection attacks, which could allow an
attacker to gain privileged access to a target user's environment�

� 3rd party plugins do not adequately validate inputs.

�� LLM output is entered directly into a system shell or similar function such as or
, resulting in remote code execution�

�� JavaScript or Markdown is generated by the LLM and returned to a user. The code is
then interpreted by the browser, resulting in XSS.

exec
eval

�� Treat the model as any other user, adopting a zero-trust approach, and apply proper
input validation on responses coming from the model to backend functions�

�� Follow the OWASP ASVS (Application Security Verification Standard) guidelines to
ensure effective input validation and sanitization�

�� Encode model output back to users to mitigate undesired code execution by
JavaScript or Markdown. OWASP ASVS provides detailed guidance on output
encoding.

Common Examples of Vulnerability

Prevention and Mitigation Strategies

Description

OWASP Top 10 for LLM Applications v1.1|

9OWASP.org

�� An application utilizes an LLM plugin to generate responses for a chatbot feature. The
plugin also offers a number of administrative functions accessible to another
privileged LLM. The general purpose LLM directly passes its response, without proper
output validation, to the plugin causing the plugin to shut down for maintenance�

�� A user utilizes a website summarizer tool powered by an LLM to generate a concise
summary of an article. The website includes a prompt injection instructing the LLM to
capture sensitive content from either the website or from the user's conversation.
From there the LLM can encode the sensitive data and send it, without any output
validation or filtering, to an attacker-controlled server�

�� An LLM allows users to craft SQL queries for a backend database through a chat-like
feature. A user requests a query to delete all database tables. If the crafted query from
the LLM is not scrutinized, then all database tables will be deleted�

�� A web app uses an LLM to generate content from user text prompts without output
sanitization. An attacker could submit a crafted prompt causing the LLM to return an
unsanitized JavaScript payload, leading to XSS when rendered on a victim's browser.
Insufficient validation of prompts enabled this attack.

�� Arbitrary Code Execution: Snyk Security Blo�
�� ChatGPT Plugin Exploit Explained: From Prompt Injection to Accessing Private Data:

Embrace The Re�
�� New prompt injection attack on ChatGPT web version. Markdown images can steal

your chat data: System Weaknes�
�� Don’t blindly trust LLM responses. Threats to chatbots: Embrace The Re�
�� Threat Modeling LLM Applications: AI Villag�
�� OWASP ASVS - 5 Validation, Sanitization and Encoding: OWASP AASVS

Example Attack Scenarios

Reference Links

https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://systemweakness.com/new-prompt-injection-attack-on-chatgpt-web-version-ef717492c5c2?gi=8daec85e2116
https://systemweakness.com/new-prompt-injection-attack-on-chatgpt-web-version-ef717492c5c2?gi=8daec85e2116
https://embracethered.com/blog/posts/2023/ai-injections-threats-context-matters/
https://aivillage.org/large%20language%20models/threat-modeling-llm/
https://owasp-aasvs4.readthedocs.io/en/latest/V5.html#validation-sanitization-and-encoding
https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5411357

OWASP Top 10 for LLM Applications v1.1|

10OWASP.org

LLM03: Training Data Poisoning

The starting point of any machine learning approach is training data, simply “raw text”. To
be highly capable (e.g., have linguistic and world knowledge), this text should span a
broad range of domains, genres and languages. A large language model uses deep neural
networks to generate outputs based on patterns learned from training data.

Training data poisoning refers to manipulation of pre-training data or data involved within
the fine-tuning or embedding processes to introduce vulnerabilities (which all have unique
and sometimes shared attack vectors), backdoors or biases that could compromise the
model’s security, effectiveness or ethical behavior. Poisoned information may be surfaced
to users or create other risks like performance degradation, downstream software
exploitation and reputational damage. Even if users distrust the problematic AI output, the
risks remain, including impaired model capabilities and potential harm to brand
reputation�

� Pre-training data refers to the process of training a model based on a task or dataset�
� Fine-tuning involves taking an existing model that has already been trained and

adapting it to a narrower subject or a more focused goal by training it using a curated
dataset. This dataset typically includes examples of inputs and corresponding desired
outputs�

� The embedding process is the process of converting categorical data (often text) into
a numerical representation that can be used to train a language model. The embedding
process involves representing words or phrases from the text data as vectors in a
continuous vector space. The vectors are typically generated by feeding the text data
into a neural network that has been trained on a large corpus of text.

Data poisoning is considered an integrity attack because tampering with the training data
impacts the model’s ability to output correct predictions. Naturally, external data sources
present higher risk as the model creators do not have control of the data or a high level of
confidence that the content does not contain bias, falsified information or inappropriate
content.

�� A malicious actor, or a competitor brand intentionally creates inaccurate or malicious
documents which are targeted at a model’s pre-training, fine-tuning data or
embeddings. Consider both Split-View Data Poisoning and Frontrunning Poisoning
attack vectors for illustrations�
�� The victim model trains using falsified information which is reflected in outputs of

generative AI prompts to it's consumers.

Common Examples of Vulnerability

Description

https://github.com/GangGreenTemperTatum/speaking/blob/main/dc604/hacker-summer-camp-23/Ads%20_%20Poisoning%20Web%20Training%20Datasets%20_%20Flow%20Diagram%20-%20Exploit%201%20Split-View%20Data%20Poisoning.jpeg
https://github.com/GangGreenTemperTatum/speaking/blob/main/dc604/hacker-summer-camp-23/Ads%20_%20Poisoning%20Web%20Training%20Datasets%20_%20Flow%20Diagram%20-%20Exploit%202%20Frontrunning%20Data%20Poisoning.jpeg

OWASP Top 10 for LLM Applications v1.1|

11q

�� A malicious actor is able to perform direct injection of falsified, biased or harmful
content into the training processes of a model which is returned in subsequent
outputs�

�� An unsuspecting user is indirectly injecting sensitive or proprietary data into the
training processes of a model which is returned in subsequent outputs�

�� A model is trained using data which has not been verified by its source, origin or
content in any of the training stage examples which can lead to erroneous results if the
data is tainted or incorrect�

�� Unrestricted infrastructure access or inadequate sandboxing may allow a model to
ingest unsafe training data resulting in biased or harmful outputs. This example is also
present in any of the training stage examples�
�� In this scenario, a users input to the model may be reflected in the output to

another user (leading to a breach), or the user of an LLM may receive outputs from
the model which are inaccurate, irrelevant or harmful depending on the type of data
ingested compared to the model use-case (usually reflected with a model card)�

�� Whether a developer, client or general consumer of the LLM, it is important to
understand the implications of how this vulnerability could reflect risks within your

LLM application when interacting with a non-proprietary LLM to understand the legitimacy
of model outputs based on it's training procedures. Similarly, developers of the LLM may
be at risk to both direct and indirect attacks on internal or third-party data used for fine-
tuning and embedding (most common) which as a result creates a risk for all it's
consumers

�� Verify the supply chain of the training data, especially when sourced externally as well
as maintaining attestations via the "ML-BOM" (Machine Learning Bill of Materials)
methodology as well as verifying model cards�

�� Verify the correct legitimacy of targeted data sources and data contained obtained
during both the pre-training, fine-tuning and embedding stages�

�� Verify your use-case for the LLM and the application it will integrate to. Craft different
models via separate training data or fine-tuning for different use-cases to create a
more granular and accurate generative AI output as per it's defined use-case�

�� Ensure sufficient sandboxing through network controls are present to prevent the
model from scraping unintended data sources which could hinder the machine
learning output�

�� Use strict vetting or input filters for specific training data or categories of data sources
to control volume of falsified data. Data sanitization, with techniques such as
statistical outlier detection and anomaly detection methods to detect and remove
adversarial data from potentially being fed into the fine-tuning process�

�� Adversarial robustness techniques such as federated learning and constraints to
minimize the effect of outliers or adversarial training to be vigorous against worst-case
perturbations of the training data�
�� An "MLSecOps" approach could be to include adversarial robustness to the training

lifecycle with the auto poisoning technique.

Prevention and Mitigation Strategies

OWASP Top 10 for LLM Applications v1.1|

12OWASP.org

�� Stanford Research Paper:CS324: Stanford Researc�
�� How data poisoning attacks corrupt machine learning models: CSO Onlin�
�� MITRE ATLAS (framework) Tay Poisoning: MITRE ATLA�
�� PoisonGPT: How we hid a lobotomized LLM on Hugging Face to spread fake news:

Mithril Securit�
�� Inject My PDF: Prompt Injection for your Resume: Kai Greshak�
�� Backdoor Attacks on Language Models: Towards Data Scienc�
�� Poisoning Language Models During Instruction: Arxiv White Pape�
�� FedMLSecurity:arXiv:2306.04959: Arxiv White Pape�
�� The poisoning of ChatGPT: Software Crisis Blo�

��� Poisoning Web-Scale Training Datasets - Nicholas Carlini | Stanford MLSys #75:
YouTube Vide�

��� OWASP CycloneDX v1.5: OWASP CycloneDX

Reference Links

�� The LLM generative AI prompt output can mislead users of the application which can
lead to biased opinions, followings or even worse, hate crimes etc�

�� If the training data is not correctly filtered and|or sanitized, a malicious user of the
application may try to influence and inject toxic data into the model for it to adapt to
the biased and false data�

�� A malicious actor or competitor intentionally creates inaccurate or malicious
documents which are targeted at a model’s training data in which is training the model
at the same time based on inputs. The victim model trains using this falsified
information which is reflected in outputs of generative AI prompts to it's consumers�

�� The vulnerability Prompt Injection could be an attack vector to this vulnerability if
insufficient sanitization and filtering is performed when clients of the LLM application
input is used to train the model. I.E, if malicious or falsified data is input to the model
from a client as part of a prompt injection technique, this could inherently be portrayed
into the model data.

Example Attack Scenarios

�� Testing and Detection, by measuring the loss during the training stage and analyzing
trained models to detect signs of a poisoning attack by analyzing model behavior on
specific test inputs�
�� Monitoring and alerting on number of skewed responses exceeding a threshold�
�� Use of a human loop to review responses and auditing�
�� Implement dedicated LLMs to benchmark against undesired consequences and

train other LLMs using reinforcement learning techniques�
�� Perform LLM-based red team exercises or LLM vulnerability scanning into the

testing phases of the LLM's lifecycle.

b. An example repository of this would be Autopoison testing, including both attacks
such as Content Injection Attacks (“(attempting to promote a brand name in model
responses”) and Refusal Attacks (“always making the model refuse to respond”) that
can be accomplished with this approach.

https://stanford-cs324.github.io/winter2022/lectures/data/
https://www.csoonline.com/article/3613932/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://atlas.mitre.org/studies/AML.CS0009/
https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/
https://kai-greshake.de/posts/inject-my-pdf/
https://towardsdatascience.com/backdoor-attacks-on-language-models-can-we-trust-our-models-weights-73108f9dcb1f
https://arxiv.org/abs/2305.00944
https://arxiv.org/abs/2306.04959
https://softwarecrisis.dev/letters/the-poisoning-of-chatgpt/
https://www.youtube.com/watch?v=h9jf1ikcGyk
https://cyclonedx.org/capabilities/mlbom/
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/blob/main/1_0_vulns/PromptInjection.md
https://wandb.ai/ayush-thakur/Intro-RLAIF/reports/An-Introduction-to-Training-LLMs-Using-Reinforcement-Learning-From-Human-Feedback-RLHF---VmlldzozMzYyNjcy
https://www.anthropic.com/index/red-teaming-language-models-to-reduce-harms-methods-scaling-behaviors-and-lessons-learned
https://github.com/leondz/garak
https://github.com/azshue/AutoPoison

OWASP Top 10 for LLM Applications v1.1|

13OWASP.org

LLM04: Model Denial of Service

An attacker interacts with an LLM in a method that consumes an exceptionally high
amount of resources, which results in a decline in the quality of service for them and other
users, as well as potentially incurring high resource costs. Furthermore, an emerging
major security concern is the possibility of an attacker interfering with or manipulating the
context window of an LLM. This issue is becoming more critical due to the increasing use
of LLMs in various applications, their intensive resource utilization, the unpredictability of
user input, and a general unawareness among developers regarding this vulnerability. In
LLMs, the context window represents the maximum length of text the model can manage,
covering both input and output. It's a crucial characteristic of LLMs as it dictates the
complexity of language patterns the model can understand and the size of the text it can
process at any given time. The size of the context window is defined by the model's
architecture and can differ between models.

�� Posing queries that lead to recurring resource usage through high-volume generation
of tasks in a queue, e.g. with LangChain or AutoGPT�

�� Sending unusually resource-consuming queries that use unusual orthography or
sequences�

�� Continuous input overflow: An attacker sends a stream of input to the LLM that
exceeds its context window, causing the model to consume excessive computational
resources�

�� Repetitive long inputs: The attacker repeatedly sends long inputs to the LLM, each
exceeding the context window�

�� Recursive context expansion: The attacker constructs input that triggers recursive
context expansion, forcing the LLM to repeatedly expand and process the context
window�

�� Variable-length input flood: The attacker floods the LLM with a large volume of
variable-length inputs, where each input is carefully crafted to just reach the limit of the
context window. This technique aims to exploit any inefficiencies in processing
variable-length inputs, straining the LLM and potentially causing it to become
unresponsive.

Common Examples of Vulnerability

Description

OWASP Top 10 for LLM Applications v1.1|

14OWASP.org

�� Implement input validation and sanitization to ensure user input adheres to defined
limits and filters out any malicious content�

�� Cap resource use per request or step, so that requests involving complex parts
execute more slowly�

�� Enforce API rate limits to restrict the number of requests an individual user or IP
address can make within a specific timeframe�

�� Limit the number of queued actions and the number of total actions in a system
reacting to LLM responses�

�� Continuously monitor the resource utilization of the LLM to identify abnormal spikes or
patterns that may indicate a DoS attack�

�� Set strict input limits based on the LLM's context window to prevent overload and
resource exhaustion�

�� Promote awareness among developers about potential DoS vulnerabilities in LLMs and
provide guidelines for secure LLM implementation.

Prevention and Mitigation Strategies

�� An attacker repeatedly sends multiple difficult and costly requests to a hosted model
leading to worse service for other users and increased resource bills for the host�

�� A piece of text on a webpage is encountered while an LLM-driven tool is collecting
information to respond to a benign query. This leads to the tool making many more
web page requests, resulting in large amounts of resource consumption�

�� An attacker continuously bombards the LLM with input that exceeds its context
window. The attacker may use automated scripts or tools to send a high volume of
input, overwhelming the LLM's processing capabilities. As a result, the LLM consumes
excessive computational resources, leading to a significant slowdown or complete
unresponsiveness of the system�

�� An attacker sends a series of sequential inputs to the LLM, with each input designed to
be just below the context window's limit. By repeatedly submitting these inputs, the
attacker aims to exhaust the available context window capacity. As the LLM struggles
to process each input within its context window, system resources become strained,
potentially resulting in degraded performance or a complete denial of service�

�� An attacker leverages the LLM's recursive mechanisms to trigger context expansion
repeatedly. By crafting input that exploits the recursive behavior of the LLM, the
attacker forces the model to repeatedly expand and process the context window,
consuming significant computational resources. This attack strains the system and
may lead to a DoS condition, making the LLM unresponsive or causing it to crash.

Example Attack Scenarios

OWASP Top 10 for LLM Applications v1.1|

15OWASP.org

�� LangChain max_iterations: hwchase17 on Twitte�
�� Sponge Examples: Energy-Latency Attacks on Neural Networks: Arxiv White Pape�
�� OWASP DOS Attack: OWAS�
�� Learning From Machines: Know Thy Context: Luke Bechte�
�� Sourcegraph Security Incident on API Limits Manipulation and DoS Attack :

Sourcegraph

Reference Links

�� An attacker floods the LLM with a large volume of variable-length inputs, carefully
crafted to approach or reach the context window's limit. By overwhelming the LLM with
inputs of varying lengths, the attacker aims to exploit any inefficiencies in processing
variable-length inputs. This flood of inputs puts an excessive load on the LLM's
resources, potentially causing performance degradation and hindering the system's
ability to respond to legitimate requests�

�� While DoS attacks commonly aim to overwhelm system resources, they can also
exploit other aspects of system behavior, such as API limitations. For example, in a
recent Sourcegraph security incident, the malicious actor employed a leaked admin
access token to alter API rate limits, thereby potentially causing service disruptions by
enabling abnormal levels of request volumes.

https://twitter.com/hwchase17/status/1608467493877579777
https://arxiv.org/abs/2006.03463
https://owasp.org/www-community/attacks/Denial_of_Service
https://lukebechtel.com/blog/lfm-know-thy-context
https://about.sourcegraph.com/blog/security-update-august-2023

OWASP Top 10 for LLM Applications v1.1|

16OWASP.org

LLM05: Supply Chain Vulnerabilities

The supply chain in LLMs can be vulnerable, impacting the integrity of training data, ML
models, and deployment platforms. These vulnerabilities can lead to biased outcomes,
security breaches, or even complete system failures. Traditionally, vulnerabilities are
focused on software components, but Machine Learning extends this with the pre-trained
models and training data supplied by third parties susceptible to tampering and poisoning
attacks.

Finally, LLM Plugin extensions can bring their own vulnerabilities. These are described in
LLM07 - Insecure Plugin Design, which covers writing LLM Plugins and provides helpful
information to evaluate third-party plugins.

�� Traditional third-party package vulnerabilities, including outdated or deprecated
components�

�� Using a vulnerable pre-trained model for fine-tuning�
�� Use of poisoned crowd-sourced data for training�
�� Using outdated or deprecated models that are no longer maintained leads to security

issues�
�� Unclear T&Cs and data privacy policies of the model operators lead to the application's

sensitive data being used for model training and subsequent sensitive information
exposure. This may also apply to risks from using copyrighted material by the model
supplier.

�� Carefully vet data sources and suppliers, including T&Cs and their privacy policies, only
using trusted suppliers. Ensure adequate and independently audited security is in
place and that model operator policies align with your data protection policies, i.e.,
your data is not used for training their models; similarly, seek assurances and legal
mitigations against using copyrighted material from model maintainers�

�� Only use reputable plugins and ensure they have been tested for your application
requirements. LLM-Insecure Plugin Design provides information on the LLM-aspects of
Insecure Plugin design you should test against to mitigate risks from using third-party
plugins.

Common Examples of Vulnerability

Prevention and Mitigation Strategies

Description

https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/blob/main/1_1_vulns/InsecurePluginDesign.md

OWASP Top 10 for LLM Applications v1.1|

17OWASP.org

�� Understand and apply the mitigations found in the OWASP Top Ten's A06:2021 –
Vulnerable and Outdated Components. This includes vulnerability scanning,
management, and patching components. For development environments with access
to sensitive data, apply these controls in those environments, too�

�� Maintain an up-to-date inventory of components using a Software Bill of Materials
(SBOM) to ensure you have an up-to-date, accurate, and signed inventory, preventing
tampering with deployed packages. SBOMs can be used to detect and alert for new,
zero-date vulnerabilities quickly�

�� At the time of writing, SBOMs do not cover models, their artifacts, and datasets. If your
LLM application uses its own model, you should use MLOps best practices and
platforms offering secure model repositories with data, model, and experiment
tracking�

�� You should also use model and code signing when using external models and
suppliers�

�� Anomaly detection and adversarial robustness tests on supplied models and data can
help detect tampering and poisoning as discussed in Training Data Poisoning; ideally,
this should be part of MLOps pipelines; however, these are emerging techniques and
may be easier to implement as part of red teaming exercises�

�� Implement sufficient monitoring to cover component and environment vulnerabilities
scanning, use of unauthorized plugins, and out-of-date components, including the
model and its artifacts�

�� Implement a patching policy to mitigate vulnerable or outdated components. Ensure
the application relies on a maintained version of APIs and the underlying model�

��� Regularly review and audit supplier Security and Access, ensuring no changes in their
security posture or T&Cs.

�� An attacker exploits a vulnerable Python library to compromise a system. This
happened in the first Open AI data breach�

�� An attacker provides an LLM plugin to search for flights, generating fake links that lead
to scamming users�

�� An attacker exploits the PyPi package registry to trick model developers into
downloading a compromised package and exfiltrating data or escalating privilege in a
model development environment. This was an actual attack�

�� An attacker poisons a publicly available pre-trained model specializing in economic
analysis and social research to create a back door that generates misinformation and
fake news. They deploy it on a model marketplace (e.g., Hugging Face) for victims to
use�

�� An attacker poisons publicly available datasets to help create a back door when fine-
tuning models. The back door subtly favors certain companies in different markets�

�� A compromised employee of a supplier (outsourcing developer, hosting company, etc.)
exfiltrates data, model, or code stealing IP.

Example Attack Scenarios

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/blob/main/1_0_vulns/Training_Data_Poisoning.md

OWASP Top 10 for LLM Applications v1.1|

18OWASP.org

�� ChatGPT Data Breach Confirmed as Security Firm Warns of Vulnerable Component
Exploitation: Security Wee�

�� Plugin review process: OpenA�
�� Compromised PyTorch-nightly dependency chain: PyTorc�
�� PoisonGPT: How we hid a lobotomized LLMs on Hugging Face to spread fake news:

Mithril Securit�
�� Army looking at the possibility of ‘AI BOMs: Defense Scoo�
�� Failure Modes in Machine Learning: Microsof�
�� ML Supply Chain Compromise: MITR�
�� Transferability in Machine Learning: from Phenomena to Black-Box Attacks using

Adversarial Samples: Cornell Universit�
�� BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain:

Cornell Universit�
��� VirusTotal Poisoning: MITRE

Reference Links

�� An LLM operator changes its T&Cs and Privacy Policy to require an explicit opt out
from using application data for model training, leading to the memorization of
sensitive data.

https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://platform.openai.com/docs/plugins/review
https://pytorch.org/blog/compromised-nightly-dependency/
https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/
https://defensescoop.com/2023/05/25/army-looking-at-the-possibility-of-ai-boms-bill-of-materials/
https://learn.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
https://atlas.mitre.org/techniques/AML.T0010/
https://arxiv.org/pdf/1605.07277.pdf
https://arxiv.org/pdf/1605.07277.pdf
https://arxiv.org/abs/1708.06733
https://atlas.mitre.org/studies/AML.CS0002

OWASP Top 10 for LLM Applications v1.1|

19OWASP.org

LLM06: Sensitive Information Disclosure

LLM applications have the potential to reveal sensitive information, proprietary algorithms,
or other confidential details through their output. This can result in unauthorized access to
sensitive data, intellectual property, privacy violations, and other security breaches. It is
important for consumers of LLM applications to be aware of how to safely interact with
LLMs and identify the risks associated with unintentionally inputting sensitive data that
may be subsequently returned by the LLM in output elsewhere.

To mitigate this risk, LLM applications should perform adequate data sanitization to
prevent user data from entering the training model data. LLM application owners should
also have appropriate Terms of Use policies available to make consumers aware of how
their data is processed and the ability to opt out of having their data included in the
training model.

The consumer-LLM application interaction forms a two-way trust boundary, where we
cannot inherently trust the client->LLM input or the LLM->client output. It is important to
note that this vulnerability assumes that certain prerequisites are out of scope, such as
threat modeling exercises, securing infrastructure, and adequate sandboxing. Adding
restrictions within the system prompt around the types of data the LLM should return can
provide some mitigation against sensitive information disclosure, but the unpredictable
nature of LLMs means such restrictions may not always be honored and could be
circumvented via prompt injection or other vectors.

�� Integrate adequate data sanitization and scrubbing techniques to prevent user data
from entering the training model data�

�� Implement robust input validation and sanitization methods to identify and filter out
potential malicious inputs to prevent the model from being poisoned.

Prevention and Mitigation Strategies

�� Incomplete or improper filtering of sensitive information in the LLM’s responses�
�� Overfitting or memorization of sensitive data in the LLM’s training process�
�� Unintended disclosure of confidential information due to LLM misinterpretation, lack of

data scrubbing methods or errors.

Common Examples of Vulnerability

Description

OWASP Top 10 for LLM Applications v1.1|

20OWASP.org

�� When enriching the model with data and if fine-tuning a model: (I.E, data fed into the
model before or during deployment�
�� Anything that is deemed sensitive in the fine-tuning data has the potential to be

revealed to a user. Therefore, apply the rule of least privilege and do not train the
model on information that the highest-privileged user can access which may be
displayed to a lower-privileged user�

�� Access to external data sources (orchestration of data at runtime) should be limited�
�� Apply strict access control methods to external data sources and a rigorous approach

to maintaining a secure supply chain.

�� AI data leak crisis: New tool prevents company secrets from being fed to ChatGPT:
Fox Busines�

�� Lessons learned from ChatGPT’s Samsung leak: Cybernew�
�� Cohere - Terms Of Use: Coher�
�� A threat modeling example: AI Villag�
�� OWASP AI Security and Privacy Guide: OWASP AI Security & Privacy Guid�
�� Ensuring the Security of Large Language Models: Experts Exchange

Reference Links

�� Unsuspecting legitimate user A is exposed to certain other user data via the LLM when
interacting with the LLM application in a non-malicious manner�

�� User A targets a well-crafted set of prompts to bypass input filters and sanitization
from the LLM to cause it to reveal sensitive information (PII) about other users of the
application�

�� Personal data such as PII is leaked into the model via training data due to either
negligence from the user themselves, or the LLM application. This case could increase
the risk and probability of scenario 1 or 2 above.

Example Attack Scenarios

https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/wiki/Definitions
https://www.foxbusiness.com/politics/ai-data-leak-crisis-prevent-company-secrets-chatgpt
https://cybernews.com/security/chatgpt-samsung-leak-explained-lessons/
https://cohere.com/terms-of-use
https://aivillage.org/large%20language%20models/threat-modeling-llm/
https://owasp.org/www-project-ai-security-and-privacy-guide/
https://www.experts-exchange.com/articles/38220/Ensuring-the-Security-of-Large-Language-Models-Strategies-and-Best-Practices.html

OWASP Top 10 for LLM Applications v1.1|

21OWASP.org

LLM07: Insecure Plugin Design

LLM plugins are extensions that, when enabled, are called automatically by the model
during user interactions. The model integration platform drives them, and the application
may have no control over the execution, especially when the model is hosted by another
party. Furthermore, plugins are likely to implement free-text inputs from the model with no
validation or type-checking to deal with context-size limitations. This allows a potential
attacker to construct a malicious request to the plugin, which could result in a wide range
of undesired behaviors, up to and including remote code execution.

The harm of malicious inputs often depends on insufficient access controls and the
failure to track authorization across plugins. Inadequate access control allows a plugin to
blindly trust other plugins and assume that the end user provided the inputs. Such
inadequate access control can enable malicious inputs to have harmful consequences
ranging from data exfiltration, remote code execution, and privilege escalation.

This item focuses on creating LLM plugins rather than third-party plugins, which LLM-
Supply-Chain-Vulnerabilities cover.

�� A plugin accepts all parameters in a single text field instead of distinct input
parameters�

�� A plugin accepts configuration strings instead of parameters that can override entire
configuration settings�

�� A plugin accepts raw SQL or programming statements instead of parameters�
�� Authentication is performed without explicit authorization to a particular plugin�
�� A plugin treats all LLM content as being created entirely by the user and performs any

requested actions without requiring additional authorization.

�� Plugins should enforce strict parameterized input wherever possible and include type
and range checks on inputs. When this is not possible, a second layer of typed calls
should be introduced, parsing requests and applying validation and sanitization. When
freeform input must be accepted because of application semantics, it should be
carefully inspected to ensure no potentially harmful methods are being called�

�� Plugin developers should apply OWASP’s recommendations in ASVS (Application
Security Verification Standard) to ensure adequate input validation and sanitization.

Common Examples of Vulnerability

Prevention and Mitigation Strategies

Description

OWASP Top 10 for LLM Applications v1.1|

22OWASP.org

�� Plugins should be inspected and tested thoroughly to ensure adequate validation. Use
Static Application Security Testing (SAST) scans and Dynamic and Interactive
application testing (DAST, IAST) in development pipelines�

�� Plugins should be designed to minimize the impact of any insecure input parameter
exploitation following the OWASP ASVS Access Control Guidelines. This includes
least-privilege access control, exposing as little functionality as possible while still
performing its desired function�

�� Plugins should use appropriate authentication identities, such as OAuth2, to apply
effective authorization and access control. Additionally, API Keys should be used to
provide context for custom authorization decisions that reflect the plugin route rather
than the default interactive user�

�� Require manual user authorization and confirmation of any action taken by sensitive
plugins�

�� Plugins are, typically, REST APIs, so developers should apply the recommendations
found in OWASP Top 10 API Security Risks – 2023 to minimize generic vulnerabilities.

�� A plugin accepts a base URL and instructs the LLM to combine the URL with a query to
obtain weather forecasts which are included in handling the user request. A malicious
user can craft a request such that the URL points to a domain they control, which
allows them to inject their own content into the LLM system via their domain�

�� A plugin accepts a free-form input into a single field that it does not validate. An
attacker supplies carefully crafted payloads to perform reconnaissance from error
messages. It then exploits known third-party vulnerabilities to execute code and
perform data exfiltration or privilege escalation�

�� A plugin used to retrieve embeddings from a vector store accepts configuration
parameters as a connection string without any validation. This allows an attacker to
experiment and access other vector stores by changing names or host parameters and
exfiltrate embeddings they should not have access to�

�� A plugin accepts SQL WHERE clauses as advanced filters, which are then appended to
the filtering SQL. This allows an attacker to stage a SQL attack�

�� An attacker uses indirect prompt injection to exploit an insecure code management
plugin with no input validation and weak access control to transfer repository
ownership and lock out the user from their repositories.

Example Attack Scenarios

OWASP Top 10 for LLM Applications v1.1|

23OWASP.org

�� OpenAI ChatGPT Plugins: ChatGPT Developer’s Guid�
�� OpenAI ChatGPT Plugins - Plugin Flow: OpenAI Documentatio�
�� OpenAI ChatGPT Plugins - Authentication: OpenAI Documentatio�
�� OpenAI Semantic Search Plugin Sample: OpenAI Githu�
�� Plugin Vulnerabilities: Visit a Website and Have Your Source Code Stolen: Embrace

The Re�
�� ChatGPT Plugin Exploit Explained: From Prompt Injection to Accessing Private Data

Embrace The Re�
�� OWASP ASVS - 5 Validation, Sanitization and Encoding: OWASP AASV�
�� OWASP ASVS 4.1 General Access Control Design: OWASP AASV�
�� OWASP Top 10 API Security Risks – 2023: OWASP

Reference Links

https://platform.openai.com/docs/plugins/introduction
https://platform.openai.com/docs/plugins/introduction/plugin-flow
https://platform.openai.com/docs/plugins/authentication/service-level
https://github.com/openai/chatgpt-retrieval-plugin
https://embracethered.com/blog/posts/2023/chatgpt-plugin-vulns-chat-with-code/
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://owasp-aasvs4.readthedocs.io/en/latest/V5.html#validation-sanitization-and-encoding
https://owasp-aasvs4.readthedocs.io/en/latest/V4.1.html#general-access-control-design
https://owasp.org/API-Security/editions/2023/en/0x11-t10/

OWASP Top 10 for LLM Applications v1.1|

24OWASP.org

LLM08: Excessive Agency

An LLM-based system is often granted a degree of agency by its developer - the ability to
interface with other systems and undertake actions in response to a prompt. The decision
over which functions to invoke may also be delegated to an LLM 'agent' to dynamically
determine based on input prompt or LLM output.

Excessive Agency is the vulnerability that enables damaging actions to be performed in
response to unexpected/ambiguous outputs from an LLM (regardless of what is causing
the LLM to malfunction; be it hallucination/confabulation, direct/indirect prompt injection,
malicious plugin, poorly-engineered benign prompts, or just a poorly-performing model).
The root cause of Excessive Agency is typically one or more of: excessive functionality,
excessive permissions or excessive autonomy. This differs from Insecure Output Handling
which is concerned with insufficient scrutiny of LLM outputs.

Excessive Agency can lead to a broad range of impacts across the confidentiality, integrity
and availability spectrum, and is dependent on which systems an LLM-based app is able
to interact with.

�� Excessive Functionality: An LLM agent has access to plugins which include functions
that are not needed for the intended operation of the system. For example, a developer
needs to grant an LLM agent the ability to read documents from a repository, but the
3rd-party plugin they choose to use also includes the ability to modify and delete
documents�

�� Excessive Functionality: A plugin may have been trialed during a development phase
and dropped in favor of a better alternative, but the original plugin remains available to
the LLM agent�

�� Excessive Functionality: An LLM plugin with open-ended functionality fails to properly
filter the input instructions for commands outside what's necessary for the intended
operation of the application. E.g., a plugin to run one specific shell command fails to
properly prevent other shell commands from being executed�

�� Excessive Permissions: An LLM plugin has permissions on other systems that are not
needed for the intended operation of the application. E.g., a plugin intended to read
data connects to a database server using an identity that not only has SELECT
permissions, but also UPDATE, INSERT and DELETE permissions.

Common Examples of Vulnerability

Description

OWASP Top 10 for LLM Applications v1.1|

25OWASP.org

�� Excessive Permissions: An LLM plugin that is designed to perform operations on
behalf of a user accesses downstream systems with a generic high-privileged identity.
E.g., a plugin to read the current user's document store connects to the document
repository with a privileged account that has access to all users' files�

�� Excessive Autonomy: An LLM-based application or plugin fails to independently verify
and approve high-impact actions. E.g., a plugin that allows a user's documents to be
deleted performs deletions without any confirmation from the user.

The following actions can prevent Excessive Agency�

�� Limit the plugins/tools that LLM agents are allowed to call to only the minimum
functions necessary. For example, if an LLM-based system does not require the ability
to fetch the contents of a URL then such a plugin should not be offered to the LLM
agent�

�� Limit the functions that are implemented in LLM plugins/tools to the minimum
necessary. For example, a plugin that accesses a user's mailbox to summarise emails
may only require the ability to read emails, so the plugin should not contain other
functionality such as deleting or sending messages�

�� Avoid open-ended functions where possible (e.g., run a shell command, fetch a URL,
etc.) and use plugins/tools with more granular functionality. For example, an LLM-
based app may need to write some output to a file. If this were implemented using a
plugin to run a shell function then the scope for undesirable actions is very large (any
other shell command could be executed). A more secure alternative would be to build
a file-writing plugin that could only support that specific functionality�

�� Limit the permissions that LLM plugins/tools are granted to other systems to the
minimum necessary in order to limit the scope of undesirable actions. For example, an
LLM agent that uses a product database in order to make purchase recommendations
to a customer might only need read access to a 'products' table; it should not have
access to other tables, nor the ability to insert, update or delete records. This should be
enforced by applying appropriate database permissions for the identity that the LLM
plugin uses to connect to the database�

�� Track user authorization and security scope to ensure actions taken on behalf of a
user are executed on downstream systems in the context of that specific user, and
with the minimum privileges necessary. For example, an LLM plugin that reads a user's
code repo should require the user to authenticate via OAuth and with the minimum
scope required�

�� Utilise human-in-the-loop control to require a human to approve all actions before they
are taken. This may be implemented in a downstream system (outside the scope of
the LLM application) or within the LLM plugin/tool itself. For example, an LLM-based
app that creates and posts social media content on behalf of a user should include a
user approval routine within the plugin/tool/API that implements the 'post' operation.

Prevention and Mitigation Strategies

OWASP Top 10 for LLM Applications v1.1|

26OWASP.org

�� Implement authorization in downstream systems rather than relying on an LLM to
decide if an action is allowed or not. When implementing tools/plugins enforce the
complete mediation principle so that all requests made to downstream systems via
the plugins/tools are validated against security policies.

The following options will not prevent Excessive Agency, but can limit the level of damage
caused�

�� Log and monitor the activity of LLM plugins/tools and downstream systems to identify
where undesirable actions are taking place, and respond accordingly�

�� Implement rate-limiting to reduce the number of undesirable actions that can take
place within a given time period, increasing the opportunity to discover undesirable
actions through monitoring before significant damage can occur.

An LLM-based personal assistant app is granted access to an individual’s mailbox via a
plugin in order to summarise the content of incoming emails. To achieve this functionality,
the email plugin requires the ability to read messages, however the plugin that the system
developer has chosen to use also contains functions for sending messages. The LLM is
vulnerable to an indirect prompt injection attack, whereby a maliciously-crafted incoming
email tricks the LLM into commanding the email plugin to call the 'send message' function
to send spam from the user's mailbox. This could be avoided by: (a) eliminating excessive
functionality by using a plugin that only offered mail-reading capabilities, (b) eliminating
excessive permissions by authenticating to the user's email service via an OAuth session
with a read-only scope, and/or (c) eliminating excessive autonomy by requiring the user to
manually review and hit 'send' on every mail drafted by the LLM plugin. Alternatively, the
damage caused could be reduced by implementing rate limiting on the mail-sending
interface.

�� Embrace the Red: Confused Deputy Problem: Embrace The Re�
�� NeMo-Guardrails: Interface guidelines: NVIDIA Githu�
�� LangChain: Human-approval for tools: Langchain Documentatio�
�� Simon Willison: Dual LLM Pattern: Simon Willison

Reference Links

Example Attack Scenario

https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/security/guidelines.md
https://python.langchain.com/docs/modules/agents/tools/how_to/human_approval
https://simonwillison.net/2023/Apr/25/dual-llm-pattern/

OWASP Top 10 for LLM Applications v1.1|

27OWASP.org

LLM09: Overreliance

�� LLM provides inaccurate information as a response while stating it in a fashion
implying it is highly authoritative. The overall system is designed without proper
checks and balances to handle this and the information misleads the user in a way
that leads to har�

�� LLM suggests insecure or faulty code, leading to vulnerabilities when incorporated into
a software system without proper oversight or verification.

Prevention and Mitigation Strategies

Common Examples of Vulnerability

Overreliance can occur when an LLM produces erroneous information and provides it in
an authoritative manner. While LLMs can produce creative and informative content, they
can also generate content that is factually incorrect, inappropriate or unsafe. This is
referred to as hallucination or confabulation. When people or systems trust this
information without oversight or confirmation it can result in a security breach,
misinformation, miscommunication, legal issues, and reputational damage.

LLM-generated source code can introduce unnoticed security vulnerabilities. This poses a
significant risk to the operational safety and security of applications. These risks show the
importance of rigorous review processes, with�

� Oversigh�
� Continuous validation mechanism�
� Disclaimers on risk

Description

�� Regularly monitor and review the LLM outputs. Use self-consistency or voting
techniques to filter out inconsistent text. Comparing multiple model responses for a
single prompt can better judge the quality and consistency of output�

�� Cross-check the LLM output with trusted external sources. This additional layer of
validation can help ensure the information provided by the model is accurate and
reliable.

OWASP Top 10 for LLM Applications v1.1|

28OWASP.org

�� Enhance the model with fine-tuning or embeddings to improve output quality. Generic
pre-trained models are more likely to produce inaccurate information compared to
tuned models in a particular domain. Techniques such as prompt engineering,
parameter efficient tuning (PET), full model tuning, and chain of thought prompting can
be employed for this purpose�

�� Implement automatic validation mechanisms that can cross-verify the generated
output against known facts or data. This can provide an additional layer of security and
mitigate the risks associated with hallucinations�

�� Break down complex tasks into manageable subtasks and assign them to different
agents. This not only helps in managing complexity, but it also reduces the chances of
hallucinations as each agent can be held accountable for a smaller task�

�� Clearly communicate the risks and limitations associated with using LLMs. This
includes potential for information inaccuracies, and other risks. Effective risk
communication can prepare users for potential issues and help them make informed
decisions�

�� Build APIs and user interfaces that encourage responsible and safe use of LLMs. This
can involve measures such as content filters, user warnings about potential
inaccuracies, and clear labeling of AI-generated content�

�� When using LLMs in development environments, establish secure coding practices and
guidelines to prevent the integration of possible vulnerabilities.

�� A news organization heavily uses an LLM to generate news articles. A malicious actor
exploits this over-reliance, feeding the LLM misleading information, and causing the
spread of disinformation�

�� The AI unintentionally plagiarizes content, leading to copyright issues and decreased
trust in the organization�

�� A software development team utilizes an LLM system to expedite the coding process.
Over-reliance on the AI's suggestions introduces security vulnerabilities in the
application due to insecure default settings or recommendations inconsistent with
secure coding practices�

�� A software development firm uses an LLM to assist developers. The LLM suggests a
non-existent code library or package, and a developer, trusting the AI, unknowingly
integrates a malicious package into the firm's software. This highlights the importance
of cross-checking LLM suggestions, especially when involving third-party code or
libraries.

Example Attack Scenario

OWASP Top 10 for LLM Applications v1.1|

29OWASP.org

�� Understanding LLMs Hallucinations: Mediu�
�� How Should Companies Communicate the Risks of Large Language Models to

Users?: Tech Policy Pres�
�� A news site used AI to write articles. It was a journalistic disaster: The Washington

Pos�
�� AI Hallucinations: Package Risk: Vulca�
�� How to Reduce the Hallucinations from Large Language Models: The New Stac�
�� Practical Steps to Reduce Hallucination: Designing With Machine Learning

Reference Links

https://towardsdatascience.com/llm-hallucinations-ec831dcd7786
https://techpolicy.press/how-should-companies-communicate-the-risks-of-large-language-models-to-users/
https://techpolicy.press/how-should-companies-communicate-the-risks-of-large-language-models-to-users/
https://www.washingtonpost.com/media/2023/01/17/cnet-ai-articles-journalism-corrections/
https://vulcan.io/blog/ai-hallucinations-package-risk
https://thenewstack.io/how-to-reduce-the-hallucinations-from-large-language-models/
https://newsletter.victordibia.com/p/practical-steps-to-reduce-hallucination

OWASP Top 10 for LLM Applications v1.1|

30OWASP.org

LLM10: Model Theft

This entry refers to the unauthorized access and exfiltration of LLM models by malicious
actors or APTs. This arises when the proprietary LLM models (being valuable intellectual
property), are compromised, physically stolen, copied or weights and parameters are
extracted to create a functional equivalent. The impact of LLM model theft can include
economic and brand reputation loss, erosion of competitive advantage, unauthorized
usage of the model or unauthorized access to sensitive information contained within the
model.

The theft of LLMs represents a significant security concern as language models become
increasingly powerful and prevalent. Organizations and researchers must prioritize robust
security measures to protect their LLM models, ensuring the confidentiality and integrity
of their intellectual property. Employing a comprehensive security framework that includes
access controls, encryption, and continuous monitoring is crucial in mitigating the risks
associated with LLM model theft and safeguarding the interests of both individuals and
organizations relying on LLM.

�� An attacker exploits a vulnerability in a company's infrastructure to gain unauthorized
access to their LLM model repository via misconfiguration in their network or
application security settings�

�� Use a centralized ML Model Inventory or Registry for ML models used in production.
Having a centralized model registry prevents unauthorized access to ML Models via
access controls, authentication, and monitoring/logging capability which are good
foundations for governance. Having a centralized repository is also beneficial for
collecting data about algorithms used by the models for the purposes of compliance,
risk assessments, and risk mitigation�

�� An insider threat scenario where a disgruntled employee leaks model or related
artifacts�

�� An attacker queries the model API using carefully crafted inputs and prompt injection
techniques to collect a sufficient number of outputs to create a shadow model�

�� A malicious attacker is able to bypass input filtering techniques of the LLM to perform
a side-channel attack and ultimately harvest model weights and architecture
information to a remote controlled resource.

Common Examples of Vulnerability

Description

OWASP Top 10 for LLM Applications v1.1|

31OWASP.org

�� The attack vector for model extraction involves querying the LLM with a large number
of prompts on a particular topic. The outputs from the LLM can then be used to fine-
tune another model. However, there are a few things to note about this attack�

� The attacker must generate a large number of targeted prompts. If the prompts are
not specific enough, the outputs from the LLM will be useless�

� The outputs from LLMs can sometimes contain hallucinated answers meaning the
attacker may not be able to extract the entire model as some of the outputs can be
nonsensical�

� It is not possible to replicate an LLM 100% through model extraction. However,
the attacker will be able to replicate a partial model�

�� The attack vector for functional model replication involves using the target model via
prompts to generate synthetic training data (an approach called "self-instruct") to then
use it and fine-tune another foundational model to produce a functional equivalent.
This bypasses the limitations of traditional query-based extraction used in Example 5
and has been successfully used in research of using an LLM to train another LLM.
Although in the context of this research, model replication is not an attack. The
approach could be used by an attacker to replicate a proprietary model with a public
API.

Use of a stolen model, as a shadow model, can be used to stage adversarial attacks
including unauthorized access to sensitive information contained within the model or
experiment undetected with adversarial inputs to further stage advanced prompt
injections.

�� Implement strong access controls (E.G., RBAC and rule of least privilege) and strong
authentication mechanisms to limit unauthorized access to LLM model repositories
and training environments�
�� This is particularly true for the first three common examples, which could cause

this vulnerability due to insider threats, misconfiguration, and/or weak security
controls about the infrastructure that houses LLM models, weights and architecture
in which a malicious actor could infiltrate from insider or outside the environment�

�� Supplier management tracking, verification and dependency vulnerabilities are
important focus topics to prevent exploits of supply-chain attacks�

�� Restrict the LLM's access to network resources, internal services, and APIs�
�� This is particularly true for all common examples as it covers insider risk and

threats, but also ultimately controls what the LLM application "has access to" and
thus could be a mechanism or prevention step to prevent side-channel attacks�

�� Regularly monitor and audit access logs and activities related to LLM model
repositories to detect and respond to any suspicious or unauthorized behavior
promptly.

Prevention and Mitigation Strategies

OWASP Top 10 for LLM Applications v1.1|

32OWASP.org

�� An attacker exploits a vulnerability in a company's infrastructure to gain unauthorized
access to their LLM model repository. The attacker proceeds to exfiltrate valuable LLM
models and uses them to launch a competing language processing service or extract
sensitive information, causing significant financial harm to the original company�

�� A disgruntled employee leaks model or related artifacts. The public exposure of this
scenario increases knowledge to attackers for gray box adversarial attacks or
alternatively directly steal the available property�

�� An attacker queries the API with carefully selected inputs and collects sufficient
number of outputs to create a shadow model�

�� A security control failure is present within the supply-chain and leads to data leaks of
proprietary model information�

�� A malicious attacker bypasses input filtering techniques and preambles of the LLM to
perform a side-channel attack and retrieve model information to a remote controlled
resource under their control.

�� Automate MLOps deployment with governance and tracking and approval workflows to
tighten access and deployment controls within the infrastructure�

�� Implement controls and mitigation strategies to mitigate and|or reduce risk of prompt
injection techniques causing side-channel attacks�

�� Rate Limiting of API calls where applicable and|or filters to reduce risk of data
exfiltration from the LLM applications, or implement techniques to detect (E.G., DLP)
extraction activity from other monitoring systems�

�� Implement adversarial robustness training to help detect extraction queries and tighten
physical security measures�

�� Implement a watermarking framework into the embedding and detection stages of an
LLMs lifecyle.

�� Meta’s powerful AI language model has leaked online: The Verg�
�� Runaway LLaMA | How Meta's LLaMA NLP model leaked: DeepLearning.a�
�� AML.TA0000 ML Model Access: MITRE ATLA�
�� I Know What You See: Cornell Universit�
�� D-DAE: Defense-Penetrating Model Extraction Attacks: IEE�
�� A Comprehensive Defense Framework Against Model Extraction Attacks: IEE�
�� Alpaca: A Strong, Replicable Instruction-Following Model: Stanford Universit�
�� How Watermarking Can Help Mitigate The Potential Risks Of LLMs?: KD Nuggets

Reference Links

Example Attack Scenario

https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.deeplearning.ai/the-batch/how-metas-llama-nlp-model-leaked/
https://atlas.mitre.org/tactics/AML.TA0000
https://arxiv.org/pdf/1803.05847.pdf
https://www.computer.org/csdl/proceedings-article/sp/2023/933600a432/1He7YbsiH4c
https://ieeexplore.ieee.org/document/10080996
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://www.kdnuggets.com/2023/03/watermarking-help-mitigate-potential-risks-llms.html

OWASP Top 10 for LLM Applications v1.1|

33OWASP.org

Core Team & Contributors

Core Team Members are listed in Blue

Adam Swanda

Adesh Gairola

Adrian Culley 

Aleksei Ryzhkov

Alexander Zai

Aliaksei Bialko

Amay Trivedi

Ananda Krishna

Andrea Succi

Andrew Amaro

Andy Dyrcz

Ashish Rajan

Bajram Hoxha

Bilal Siddiqui

Brian Pendleton

Brodie McRae

Cassio Goldschmidt

Dan Frommer

Dan Klein

David Taylor

Dotan Nahum

Dr. Matteo Große-Kampmann 

Emanuel Valente

Ads Dawson

Andy Smith

Aubrey King

Bob Simonoff

David Rowe

AWS

Cohere

Trellix 

EPAM

EPAM

Astra Security

Klavan Security Group

Linkfire

Cloud Security Podcast

F5 DevCentral

Databook

Trustwave

Blue Yonder

AVID

AWS

ServiceTitan

Accenture

AWS

Check Point

AWARE7 

iFood

Emmanuel Guilherme Junior

Eugene Neelou

Gavin Klondike

Itamar Golan

Jason Ross

John Sotiropoulos

Ken Huang

Leon Derczynski

Eugene Tawiah 

Fernando Calderon

Gaurav “GP” Pal

Guillaume Ehinger

Idan Hen

James Rabe

Jason Axley

Jason Haddix

Jeff Williams 

Jinson Varghese Behanan

Johann Rehberger

Jorge Pinto

Joshua Nussbaum

Ken Arora

Kelvin Low 

Koichiro Watanabe

Larry Carson

Leonardo Shikida

Lior Drihem 

Manish Kumar Yadav

McMaster University

Complex Technologies 

Unit42 Palo Alto Networks

stackArmor

AI Village

Google

Microsoft

IriusRisk

AWS

BuddoBot

Salesforce

Contrast Security

Astra Security

Kainos

F5

DistributedApps.ai

aigos

Microsoft
 

U of W, IT U of Copenhagen

IBM  

SAP

Manjesh S

Mike Finch

Rachit Sood

Rich Harang 

Sandy Dunn 

Sanket Naik

Manuel S. Lemos 

Mehdi Karimi 

Mike Jang

Nathan Hamiel 

Natsu Ooke 

Neal Swaelens 

Nicholas Grove

Nipun Gupta

Nir Paz

Oleksandr Yaremchuk 

Ophir Dror 

Otto Sulin

Parveen Yadav

Patrick Biyaga

Priyadharshini Parthasarathy

Rahul Zhade 

Ravi Singh 

Ravin Thambapillai

Reza Rashidi

Riotaro OKADA 

Ron F. Del Rosario

Ross Moore

HackerOne

BeDisruptive | ANBAN  

HackerOne

Forescout

Kudelski Security 

Aeye Security Lab Inc.

LLM Guard 

Security, AI, Microsoft 

Bearer

LLM Guard  

Nordic Venture Family

HackerOne

Thenavigo

Coalfire

GitHub

AddValueMachine Inc 

Credal.ai 

HADESS

NVIDIA

OWASP JAPAN, Asterisk Research 

SAP

Security Researcher and Writer  

Palosade

https://www.linkedin.com/in/adamswanda/
http://www.linkedin.com/in/adeshgairola
https://www.linkedin.com/in/adamdawson0/
https://www.linkedin.com/in/adrianculley
https://www.linkedin.com/in/aleksei-ryzhkov/
https://twitter.com/azai91/
https://www.linkedin.com/in/abialko/
https://www.linkedin.com/in/amay-trivedi-machine-learning
https://www.linkedin.com/in/anandakrish/
https://www.linkedin.com/in/andreasucci/
https://www.linkedin.com/in/andrew-amaro-klavansecurity/
https://www.linkedin.com/in/adyrcz/
https://www.linkedin.com/in/andysmith-uk/
https://www.linkedin.com/in/ashishrajan/
https://www.linkedin.com/in/aubreyking/
https://www.linkedin.com/in/bajramhoxha/
https://www.linkedin.com/in/bilal-siddiqui-b857601a/
https://www.linkedin.com/in/bob-simonoff/
https://www.linkedin.com/in/bwpen/
https://www.linkedin.com/in/brodie-sec
https://www.linkedin.com/in/cassiogoldschmidt/
https://www.linkedin.com/in/dan-frommer/
https://www.linkedin.com/in/~danklein/
https://www.linkedin.com/in/itamar-g1/
https://www.linkedin.com/in/david-taylor-089b911/
https://www.linkedin.com/in/jondot
https://www.linkedin.com/in/matteo-große-kampmann/
https://www.linkedin.com/in/emanuelvalente/
https://aws.amazon.com/
https://cohere.com/
https://www.trellix.com
https://www.epam.com/
https://www.epam.com/
https://www.getastra.com/
https://www.klavansecurity.com/
https://www.linkfire.com/
https://cloudsecuritypodcast.tv/
https://community.f5.com/
https://www.databook.com/
https://www.trustwave.com/en-us/company/about-us/spiderlabs/
https://blueyonder.com/
https://avidml.org/
https://aws.amazon.com/
https://www.servicetitan.com/
https://www.accenture.com/
http://aws.amazon.com/
https://www.checkpoint.com/
https://www.aware7.com/
https://www.ifood.com.br/
https://www.linkedin.com/in/emmanuelgjr/
https://www.linkedin.com/in/eneelou/
https://www.linkedin.com/in/eugenetawiah
https://www.linkedin.com/in/gppal/
https://twitter.com/GTKlondike
https://www.linkedin.com/in/gehinger/
https://www.linkedin.com/in/itamar-g1
https://www.linkedin.com/in/jrabe3
https://federate.social/@axleyjc
https://www.linkedin.com/in/jhaddix/
https://www.linkedin.com/in/algorythm/
https://www.linkedin.com/in/planetlevel/
https://www.linkedin.com/in/JinsonVarghese/
https://www.linkedin.com/in/johannrehberger/
https://www.linkedin.com/in/jsotiropoulos/
https://www.linkedin.com/in/jorgepinto/
https://www.linkedin.com/in/joshua-nussbaum/
https://www.linkedin.com/in/ken-arora-00b955/
https://www.linkedin.com/in/kenhuang8
https://www.linkedin.com/in/lowkelvin/
https://www.linkedin.com/in/koichiro-watanabe-00a17a27/
https://www.linkedin.com/in/larry-carson-8b2aa61/
https://www.linkedin.com/in/leon-derczynski
https://www.linkedin.com/in/shikida/
https://www.linkedin.com/in/liord
https://www.linkedin.com/in/manish-infosec/
https://www.mcmaster.ca/
https://www.complextech.com/
https://unit42.paloaltonetworks.com/
https://www.stackarmor.com/
https://aivillage.org/
https://about.google/
https://www.microsoft.com/
https://iriusrisk.com/
https://aws.amazon.com/
https://buddobot.com/
https://www.salesforce.com/
https://www.contrastsecurity.com/
https://www.getastra.com/
https://kainos.com/
https://www.f5.com/solutions/cybersecurity/
https://distributedapps.ai/
https://securedbyaigos.com/
https://www.microsoft.com/
https://www.uw.edu/
https://pure.itu.dk/en/persons/leon-derczynski/
https://www.ibm.com/
https://www.sap.com/
https://www.linkedin.com/in/manjesh24/
https://www.linkedin.com/in/manuelslemos/
https://www.linkedin.com/in/mbiuki/
https://www.linkedin.com/in/mkfnch
https://www.linkedin.com/in/mijang/
https://www.linkedin.com/in/nathanhamiel/
https://www.linkedin.com/in/nealswaelens/
https://www.linkedin.com/in/nicholasgrove/
https://www.linkedin.com/in/guptanipun/
https://www.linkedin.com/in/paznir/
https://www.linkedin.com/in/oleksandr-yaremchuk-28273a55/
https://www.linkedin.com/in/ophirdror/
https://www.linkedin.com/in/otto-sulin
http://in.linkedin.com/in/parveen1015/
https://www.linkedin.com/in/patrickbiyaga/
https://www.linkedin.com/in/priyadharshini-p-628760a6/
https://www.linkedin.com/in/composedsecurity/
https://www.linkedin.com/in/rahul-zhade/
https://www.linkedin.com/in/ravisingh0/
https://www.linkedin.com/in/rezaduty/
https://www.linkedin.com/in/richharang/
https://www.linkedin.com/in/ronaldfloresdelrosario/
https://www.linkedin.com/in/rossamoore/
https://www.linkedin.com/in/sandydunnciso/
https://www.linkedin.com/in/sanketnaik/
https://www.hackerone.com/
https://www.bedisruptive.com/
https://asociacionbigdata.es/
https://www.hackerone.com/
https://www.forescout.com/
https://kudelskisecurity.com/
https://www.aeyesec.jp/en
https://github.com/laiyer-ai/llm-guard
https://microsoft.com/
https://www.bearer.com/
https://github.com/laiyer-ai/llm-guard
https://www.nordicventurefamily.com/
https://www.hackerone.com/
https://www.thenavigo.com
https://www.coalfire.com/
https://github.com/
https://www.addvaluemachine.com/
https://credal.ai/
https://hadess.io/
https://www.nvidia.com
https://www.sap.com/
https://palosade.com/

OWASP Top 10 for LLM Applications v1.1|

34OWASP.org

Core Team & Contributors

Core Team Members are listed in Blue

Santosh Kumar 

Sarah Thornton 

Stefano Amorelli

Vandana Verma Sehgal

Vinay Vishwanatha

Vishwas Manral

Vladimir Fedotov

Yevhenii Molchanov 

Yusuke Karasawa

Steve Wilson

Talesh Seeparsan

Will Chilcutt 

Cisco 

Red Hat 

Contrast Security

Bit79

Snyk

Sprinklr

Precize

EPAM

Yahoo 

SumUp 

Japan Digital Design, Inc.

https://www.linkedin.com/in/santokum/
https://www.linkedin.com/in/code-poet-sarah/
https://www.linkedin.com/in/stefanoamorelli/
https://www.linkedin.com/in/wilsonsd/
https://www.linkedin.com/in/talesh/
https://www.linkedin.com/in/vandana-verma/
https://www.linkedin.com/in/vinayvishwanatha/
https://www.linkedin.com/in/vishwasmanral/
http://linkedin.com/in/vafedotov
https://www.linkedin.com/in/willchilcutt/
https://www.linkedin.com/in/yevhenii-m-aa565212c/
https://www.linkedin.com/in/yusuke-karasawa-b013ab87/
https://www.cisco.com/
https://www.redhat.com/en
https://www.contrastsecurity.com/
https://bit79.ca/
https://snyk.io/
https://www.sprinklr.com/
https://www.precize.io/
https://www.epam.com/
https://www.yahooinc.com/
https://sumup.com/
https://japan-d2.com/

