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Introduction

Our primary audience is developers, data scientists, and security experts tasked with 
designing and building applications and plug-ins leveraging LLM technologies. We aim to 
provide practical, actionable, and concise security guidance to help these professionals 
navigate the complex and evolving terrain of LLM application security.

Creating the OWASP Top 10 for LLM Applications list was a significant undertaking, built 
on the collective expertise of an international team of nearly 500 experts with over 125 
active contributors. Our contributors come from diverse backgrounds, including AI 
companies, security companies, ISVs, cloud hyperscalers, hardware providers, and 
academia.



We brainstormed for a month and proposed potential vulnerabilities, with team members 
writing up 43 distinct threats. Through multiple rounds of voting, we refined these 
proposals to a concise list of the ten most critical vulnerabilities. Dedicated sub-teams 
scrutinized each vulnerability and subjected it to public review, ensuring the most 
comprehensive and actionable final list. 



Each of these vulnerabilities, along with examples, prevention tips, attack scenarios, and 
references, was further scrutinized and refined by dedicated sub-teams and subjected to 
public review, ensuring the most comprehensive and actionable final list.

The frenzy of interest in Large Language Models (LLMs) following the release of mass-
market pre-trained chatbots in late 2022 has been remarkable. Businesses eager to 
harness the potential of LLMs are rapidly integrating them into their operations and client-
facing offerings. Yet, the breakneck speed at which development teams are adopting 
LLMs has outpaced the establishment of comprehensive security protocols, leaving many 
applications vulnerable to high-risk issues.



The need for a unified resource addressing these security concerns in LLMs was evident. 
Developers, unfamiliar with the specific risks associated with LLMs, were left with 
scattered resources, and OWASP’s mission seemed a perfect fit to help drive the safer 
adoption of this technology.


Who is it for?

The Making of the List

The Genesis of the List
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While our list shares DNA with vulnerability types found in other OWASP Top 10 lists, we 
do not simply reiterate these vulnerabilities. Instead, we delve into these vulnerabilities’ 
unique implications when encountered in applications utilizing LLMs.



Our goal is to bridge the divide between general application security principles and the 
specific challenges posed by LLMs. The group’s goals include exploring how conventional 
vulnerabilities may pose different risks or be exploited in novel ways within LLMs and how 
developers must adapt traditional remediation strategies for applications utilizing LLMs.


While our list shares DNA with vulnerability types found in other OWASP Top 10 lists, we 
do not simply reiterate these vulnerabilities. Instead, we delve into these vulnerabilities’ 
unique implications when encountered in applications utilizing LLMs.
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specific challenges posed by LLMs. The group’s goals include exploring how conventional 
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This involves unauthorized access, copying, or exfiltration 
of proprietary LLM models. The impact includes 
economic losses, compromised competitive advantage, 
and potential access to sensitive information.

LLM10: Model Theft

Systems or people overly depending on LLMs without 
oversight may face misinformation, miscommunication, 
legal issues, and security vulnerabilities due to incorrect or 
inappropriate content generated by LLMs.

LLM09: Overreliance

LLM-based systems may undertake actions leading to 
unintended consequences. The issue arises from 
excessive functionality, permissions, or autonomy granted 
to the LLM-based systems.

LLM08: Excessive Agency

LLM plugins can have insecure inputs and insufficient 
access control. This lack of application control makes 
them easier to exploit and can result in consequences like 
remote code execution.

LLM07: Insecure Plugin Design

LLMs may inadvertently reveal confidential data in their 
responses, leading to unauthorized data access, privacy 
violations, and security breaches. It’s crucial to implement 
data sanitization and strict user policies to mitigate this.

LLM06: Sensitive Information Disclosure

LLM application lifecycle can be compromised by 
vulnerable components or services, leading to security 
attacks. Using third-party datasets, pre- trained models, 
and plugins can add vulnerabilities.

LLM05: Supply Chain Vulnerabilities

Attackers cause resource-heavy operations on LLMs, 
leading to service degradation or high costs. The 
vulnerability is magnified due to the resource-intensive 
nature of LLMs and unpredictability of user inputs.

LLM04: Model Denial of Service

This occurs when LLM training data is tampered, 
introducing vulnerabilities or biases that compromise 
security, effectiveness, or ethical behavior. Sources 
include Common Crawl, WebText, OpenWebText, & books.

LLM03: Training Data Poisoning

This vulnerability occurs when an LLM output is accepted 
without scrutiny, exposing backend systems. Misuse may 
lead to severe consequences like XSS, CSRF, SSRF, 
privilege escalation, or remote code execution.

LLM02: Insecure Output Handling

This manipulates a large language model (LLM) through 
crafty inputs, causing unintended actions by the LLM. 
Direct injections overwrite system prompts, while indirect 
ones manipulate inputs from external sources.

LLM01: Prompt Injection

https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Improper_Error_Handling.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Insufficient_Access_Control.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Inadequate_Sandboxing.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Data_Leakage.html
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The diagram below presents a high level architecture for a hypothetical large language model application. 

Overlaid in the diagram are highlighted areas of risk illustrating how the OWASP Top 10 for LLM Applications 
entries intersect with the application flow. 



This diagram can be used as a visual guide, assisting in understanding how large language model security 
risks impact the overall application ecosystem.

LLM Application Data Flow
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LLM01: Prompt Injection

Prompt Injection Vulnerability occurs when an attacker manipulates a large language 
model (LLM) through crafted inputs, causing the LLM to unknowingly execute the 
attacker's intentions. This can be done directly by "jailbreaking" the system prompt or 
indirectly through manipulated external inputs, potentially leading to data exfiltration, 
social engineering, and other issues.

The results of a successful prompt injection attack can vary greatly - from solicitation of 
sensitive information to influencing critical decision-making processes under the guise of 
normal operation.



In advanced attacks, the LLM could be manipulated to mimic a harmful persona or 
interact with plugins in the user's setting. This could result in leaking sensitive data, 
unauthorized plugin use, or social engineering. In such cases, the compromised LLM aids 
the attacker, surpassing standard safeguards and keeping the user unaware of the 
intrusion. In these instances, the compromised LLM effectively acts as an agent for the 
attacker, furthering their objectives without triggering usual safeguards or alerting the end 
user to the intrusion.

� Direct Prompt Injections, also known as "jailbreaking", occur when a malicious user 
overwrites or reveals the underlying system prompt. This may allow attackers to exploit 
backend systems by interacting with insecure functions and data stores accessible 
through the LLM�

� Indirect Prompt Injections occur when an LLM accepts input from external sources 
that can be controlled by an attacker, such as websites or files. The attacker may 
embed a prompt injection in the external content hijacking the conversation context. 
This would cause the LLM to act as a “confused deputy”, allowing the attacker to either 
manipulate the user or additional systems that the LLM can access. Additionally, 
indirect prompt injections do not need to be human-visible/readable, as long as the 
text is parsed by the LLM.

�� A malicious user crafts a direct prompt injection to the LLM, which instructs it to ignore 
the application creator's system prompts and instead execute a prompt that returns 
private, dangerous, or otherwise undesirable information.

Common Examples of Vulnerability

Description
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�� A user employs an LLM to summarize a webpage containing an indirect prompt 
injection. This then causes the LLM to solicit sensitive information from the user and 
perform exfiltration via JavaScript or Markdown�

�� A malicious user uploads a resume containing an indirect prompt injection. The 
document contains a prompt injection with instructions to make the LLM inform users 
that this document is excellent eg. an excellent candidate for a job role. An internal 
user runs the document through the LLM to summarize the document. The output of 
the LLM returns information stating that this is an excellent document�

�� A user enables a plugin linked to an e-commerce site. A rogue instruction embedded 
on a visited website exploits this plugin, leading to unauthorized purchases�

�� A rogue instruction and content embedded on a visited website exploits other plugins 
to scam users.

Prevention and Mitigation Strategies

Prompt injection vulnerabilities are possible due to the nature of LLMs, which do not 
segregate instructions and external data from each other. Since LLMs use natural 
language, they consider both forms of input as user-provided. Consequently, there is no 
fool-proof prevention within the LLM, but the following measures can mitigate the impact 
of prompt injections�

�� Enforce privilege control on LLM access to backend systems. Provide the LLM with its 
own API tokens for extensible functionality, such as plugins, data access, and function-
level permissions. Follow the principle of least privilege by restricting the LLM to only 
the minimum level of access necessary for its intended operations�

�� Add a human in the loop for extended functionality. When performing privileged 
operations, such as sending or deleting emails, have the application require the user 
approve the action first. This reduces the opportunity for an indirect prompt injections 
to lead to unauthorised actions on behalf of the user without their knowledge or 
consent�

�� Segregate external content from user prompts. Separate and denote where untrusted 
content is being used to limit their influence on user prompts. For example, use 
ChatML for OpenAI API calls to indicate to the LLM the source of prompt input�

�� Establish trust boundaries between the LLM, external sources, and extensible 
functionality (e.g., plugins or downstream functions). Treat the LLM as an untrusted 
user and maintain final user control on decision-making processes. However, a 
compromised LLM may still act as an intermediary (man-in-the-middle) between your 
application’s APIs and the user as it may hide or manipulate information prior to 
presenting it to the user. Highlight potentially untrustworthy responses visually to the 
user�

�� Manually monitor LLM input and output periodically, to check that it is as expected. 
While not a mitigation, this can provide data needed to detect weaknesses and 
address them.
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�� An attacker provides a direct prompt injection to an LLM-based support chatbot. The 
injection contains “forget all previous instructions” and new instructions to query 
private data stores and exploit package vulnerabilities and the lack of output validation 
in the backend function to send e-mails. This leads to remote code execution, gaining 
unauthorized access and privilege escalation�

�� An attacker embeds an indirect prompt injection in a webpage instructing the LLM to 
disregard previous user instructions and use an LLM plugin to delete the user's emails. 
When the user employs the LLM to summarise this webpage, the LLM plugin deletes 
the user's emails�

�� A user uses an LLM to summarize a webpage containing text instructing a model to 
disregard previous user instructions and instead insert an image linking to a URL that 
contains a summary of the conversation. The LLM output complies, causing the user's 
browser to exfiltrate the private conversation�

�� A malicious user uploads a resume with a prompt injection. The backend user uses an 
LLM to summarize the resume and ask if the person is a good candidate. Due to the 
prompt injection, the LLM response is yes, despite the actual resume contents�

�� An attacker sends messages to a proprietary model that relies on a system prompt, 
asking the model to disregard its previous instructions and instead repeat its system 
prompt. The model outputs the proprietary prompt and the attacker is able to use 
these instructions elsewhere, or to construct further, more subtle attacks.

�� ChatGPT Plugin Vulnerabilities - Chat with Code: Embrace The Re�
�� ChatGPT Cross Plugin Request Forgery and Prompt Injection: Embrace The Re�
�� Defending ChatGPT against Jailbreak Attack via Self-Reminder: Research Squar�
�� Prompt Injection attack against LLM-integrated Applications: Arxiv White Pape�
�� Inject My PDF: Prompt Injection for your Resume: Kai Greshak�
�� ChatML for OpenAI API Calls: OpenAI Githu�
�� Not what you’ve signed up for: Compromising Real-World LLM-Integrated 

Applications with Indirect Prompt Injection: Arxiv White Pape�
�� Threat Modeling LLM Applications: AI Villag�
�� AI Injections: Direct and Indirect Prompt Injections and Their Implications: Embrace 

The Re�
��� Reducing The Impact of Prompt Injection Attacks Through Design: Kudelski Securit�
��� Universal and Transferable Attacks on Aligned Language Models: LLM-Attacks.or�
��� Indirect prompt injection: Kai Greshake

Example Attack Scenarios

Reference Links

https://embracethered.com/blog/posts/2023/chatgpt-plugin-vulns-chat-with-code/
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://www.researchsquare.com/article/rs-2873090/v1
https://arxiv.org/abs/2306.05499
https://kai-greshake.de/posts/inject-my-pdf/
https://github.com/openai/openai-python/blob/main/chatml.md
https://arxiv.org/pdf/2302.12173.pdf
https://arxiv.org/pdf/2302.12173.pdf
http://aivillage.org/large%20language%20models/threat-modeling-llm/
https://embracethered.com/blog/posts/2023/ai-injections-direct-and-indirect-prompt-injection-basics/
https://research.kudelskisecurity.com/2023/05/25/reducing-the-impact-of-prompt-injection-attacks-through-design/
https://llm-attacks.org/
https://kai-greshake.de/posts/llm-malware/
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LLM02: Insecure Output Handling

Insecure Output Handling refers specifically to insufficient validation, sanitization, and 
handling of the outputs generated by large language models before they are passed 
downstream to other components and systems. Since LLM-generated content can be 
controlled by prompt input, this behavior is similar to providing users indirect access to 
additional functionality.



Insecure Output Handling differs from Overreliance in that it deals with LLM-generated 
outputs before they are passed downstream whereas Overreliance focuses on broader 
concerns around overdependence on the accuracy and appropriateness of LLM outputs.



Successful exploitation of an Insecure Output Handling vulnerability can result in XSS and 
CSRF in web browsers as well as SSRF, privilege escalation, or remote code execution on 
backend systems.



The following conditions can increase the impact of this vulnerability:�

� The application grants the LLM privileges beyond what is intended for end users, 
enabling escalation of privileges or remote code execution�

� The application is vulnerable to indirect prompt injection attacks, which could allow an 
attacker to gain privileged access to a target user's environment�

� 3rd party plugins do not adequately validate inputs.

�� LLM output is entered directly into a system shell or similar function such as    or  
, resulting in remote code execution�

�� JavaScript or Markdown is generated by the LLM and returned to a user. The code is 
then interpreted by the browser, resulting in XSS.

exec
eval 

�� Treat the model as any other user, adopting a zero-trust approach, and apply proper 
input validation on responses coming from the model to backend functions�

�� Follow the OWASP ASVS (Application Security Verification Standard) guidelines to 
ensure effective input validation and sanitization�

�� Encode model output back to users to mitigate undesired code execution by 
JavaScript or Markdown. OWASP ASVS provides detailed guidance on output 
encoding.

Common Examples of Vulnerability

Prevention and Mitigation Strategies

Description
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�� An application utilizes an LLM plugin to generate responses for a chatbot feature. The 
plugin also offers a number of administrative functions accessible to another 
privileged LLM. The general purpose LLM directly passes its response, without proper 
output validation, to the plugin causing the plugin to shut down for maintenance�

�� A user utilizes a website summarizer tool powered by an LLM to generate a concise 
summary of an article. The website includes a prompt injection instructing the LLM to 
capture sensitive content from either the website or from the user's conversation. 
From there the LLM can encode the sensitive data and send it, without any output 
validation or filtering, to an attacker-controlled server�

�� An LLM allows users to craft SQL queries for a backend database through a chat-like 
feature. A user requests a query to delete all database tables. If the crafted query from 
the LLM is not scrutinized, then all database tables will be deleted�

�� A web app uses an LLM to generate content from user text prompts without output 
sanitization. An attacker could submit a crafted prompt causing the LLM to return an 
unsanitized JavaScript payload, leading to XSS when rendered on a victim's browser. 
Insufficient validation of prompts enabled this attack.

�� Arbitrary Code Execution: Snyk Security Blo�
�� ChatGPT Plugin Exploit Explained: From Prompt Injection to Accessing Private Data: 

Embrace The Re�
�� New prompt injection attack on ChatGPT web version. Markdown images can steal 

your chat data: System Weaknes�
�� Don’t blindly trust LLM responses. Threats to chatbots: Embrace The Re�
�� Threat Modeling LLM Applications: AI Villag�
�� OWASP ASVS - 5 Validation, Sanitization and Encoding: OWASP AASVS

Example Attack Scenarios

Reference Links

https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://systemweakness.com/new-prompt-injection-attack-on-chatgpt-web-version-ef717492c5c2?gi=8daec85e2116
https://systemweakness.com/new-prompt-injection-attack-on-chatgpt-web-version-ef717492c5c2?gi=8daec85e2116
https://embracethered.com/blog/posts/2023/ai-injections-threats-context-matters/
https://aivillage.org/large%20language%20models/threat-modeling-llm/
https://owasp-aasvs4.readthedocs.io/en/latest/V5.html#validation-sanitization-and-encoding
https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5411357
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LLM03: Training Data Poisoning

The starting point of any machine learning approach is training data, simply “raw text”. To 
be highly capable (e.g., have linguistic and world knowledge), this text should span a 
broad range of domains, genres and languages. A large language model uses deep neural 
networks to generate outputs based on patterns learned from training data.



Training data poisoning refers to manipulation of pre-training data or data involved within 
the fine-tuning or embedding processes to introduce vulnerabilities (which all have unique 
and sometimes shared attack vectors), backdoors or biases that could compromise the 
model’s security, effectiveness or ethical behavior. Poisoned information may be surfaced 
to users or create other risks like performance degradation, downstream software 
exploitation and reputational damage. Even if users distrust the problematic AI output, the 
risks remain, including impaired model capabilities and potential harm to brand 
reputation�

� Pre-training data refers to the process of training a model based on a task or dataset�
� Fine-tuning involves taking an existing model that has already been trained and 

adapting it to a narrower subject or a more focused goal by training it using a curated 
dataset. This dataset typically includes examples of inputs and corresponding desired 
outputs�

� The embedding process is the process of converting categorical data (often text) into 
a numerical representation that can be used to train a language model. The embedding 
process involves representing words or phrases from the text data as vectors in a 
continuous vector space. The vectors are typically generated by feeding the text data 
into a neural network that has been trained on a large corpus of text.



Data poisoning is considered an integrity attack because tampering with the training data 
impacts the model’s ability to output correct predictions. Naturally, external data sources 
present higher risk as the model creators do not have control of the data or a high level of 
confidence that the content does not contain bias, falsified information or inappropriate 
content.

�� A malicious actor, or a competitor brand intentionally creates inaccurate or malicious 
documents which are targeted at a model’s pre-training, fine-tuning data or 
embeddings. Consider both Split-View Data Poisoning and Frontrunning Poisoning 
attack vectors for illustrations�
�� The victim model trains using falsified information which is reflected in outputs of 

generative AI prompts to it's consumers.

Common Examples of Vulnerability

Description

https://github.com/GangGreenTemperTatum/speaking/blob/main/dc604/hacker-summer-camp-23/Ads%20_%20Poisoning%20Web%20Training%20Datasets%20_%20Flow%20Diagram%20-%20Exploit%201%20Split-View%20Data%20Poisoning.jpeg
https://github.com/GangGreenTemperTatum/speaking/blob/main/dc604/hacker-summer-camp-23/Ads%20_%20Poisoning%20Web%20Training%20Datasets%20_%20Flow%20Diagram%20-%20Exploit%202%20Frontrunning%20Data%20Poisoning.jpeg
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�� A malicious actor is able to perform direct injection of falsified, biased or harmful 
content into the training processes of a model which is returned in subsequent 
outputs�

�� An unsuspecting user is indirectly injecting sensitive or proprietary data into the 
training processes of a model which is returned in subsequent outputs�

�� A model is trained using data which has not been verified by its source, origin or 
content in any of the training stage examples which can lead to erroneous results if the 
data is tainted or incorrect�

�� Unrestricted infrastructure access or inadequate sandboxing may allow a model to 
ingest unsafe training data resulting in biased or harmful outputs. This example is also 
present in any of the training stage examples�
�� In this scenario, a users input to the model may be reflected in the output to 

another user (leading to a breach), or the user of an LLM may receive outputs from 
the model which are inaccurate, irrelevant or harmful depending on the type of data 
ingested compared to the model use-case (usually reflected with a model card)�

�� Whether a developer, client or general consumer of the LLM, it is important to 
understand the implications of how this vulnerability could reflect risks within your 



LLM application when interacting with a non-proprietary LLM to understand the legitimacy 
of model outputs based on it's training procedures. Similarly, developers of the LLM may 
be at risk to both direct and indirect attacks on internal or third-party data used for fine-
tuning and embedding (most common) which as a result creates a risk for all it's 
consumers

�� Verify the supply chain of the training data, especially when sourced externally as well 
as maintaining attestations via the "ML-BOM" (Machine Learning Bill of Materials) 
methodology as well as verifying model cards�

�� Verify the correct legitimacy of targeted data sources and data contained obtained 
during both the pre-training, fine-tuning and embedding stages�

�� Verify your use-case for the LLM and the application it will integrate to. Craft different 
models via separate training data or fine-tuning for different use-cases to create a 
more granular and accurate generative AI output as per it's defined use-case�

�� Ensure sufficient sandboxing through network controls are present to prevent the 
model from scraping unintended data sources which could hinder the machine 
learning output�

�� Use strict vetting or input filters for specific training data or categories of data sources 
to control volume of falsified data. Data sanitization, with techniques such as 
statistical outlier detection and anomaly detection methods to detect and remove 
adversarial data from potentially being fed into the fine-tuning process�

�� Adversarial robustness techniques such as federated learning and constraints to 
minimize the effect of outliers or adversarial training to be vigorous against worst-case 
perturbations of the training data�
�� An "MLSecOps" approach could be to include adversarial robustness to the training 

lifecycle with the auto poisoning technique.


Prevention and Mitigation Strategies
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�� Stanford Research Paper:CS324: Stanford Researc�
�� How data poisoning attacks corrupt machine learning models: CSO Onlin�
�� MITRE ATLAS (framework) Tay Poisoning: MITRE ATLA�
�� PoisonGPT: How we hid a lobotomized LLM on Hugging Face to spread fake news: 

Mithril Securit�
�� Inject My PDF: Prompt Injection for your Resume: Kai Greshak�
�� Backdoor Attacks on Language Models: Towards Data Scienc�
�� Poisoning Language Models During Instruction: Arxiv White Pape�
�� FedMLSecurity:arXiv:2306.04959: Arxiv White Pape�
�� The poisoning of ChatGPT: Software Crisis Blo�

��� Poisoning Web-Scale Training Datasets - Nicholas Carlini | Stanford MLSys #75: 
YouTube Vide�

��� OWASP CycloneDX v1.5: OWASP CycloneDX

Reference Links

�� The LLM generative AI prompt output can mislead users of the application which can 
lead to biased opinions, followings or even worse, hate crimes etc�

�� If the training data is not correctly filtered and|or sanitized, a malicious user of the 
application may try to influence and inject toxic data into the model for it to adapt to 
the biased and false data�

�� A malicious actor or competitor intentionally creates inaccurate or malicious 
documents which are targeted at a model’s training data in which is training the model 
at the same time based on inputs. The victim model trains using this falsified 
information which is reflected in outputs of generative AI prompts to it's consumers�

�� The vulnerability Prompt Injection could be an attack vector to this vulnerability if 
insufficient sanitization and filtering is performed when clients of the LLM application 
input is used to train the model. I.E, if malicious or falsified data is input to the model 
from a client as part of a prompt injection technique, this could inherently be portrayed 
into the model data.

Example Attack Scenarios

�� Testing and Detection, by measuring the loss during the training stage and analyzing 
trained models to detect signs of a poisoning attack by analyzing model behavior on 
specific test inputs�
�� Monitoring and alerting on number of skewed responses exceeding a threshold�
�� Use of a human loop to review responses and auditing�
�� Implement dedicated LLMs to benchmark against undesired consequences and 

train other LLMs using reinforcement learning techniques�
�� Perform LLM-based red team exercises or LLM vulnerability scanning into the 

testing phases of the LLM's lifecycle.

b. An example repository of this would be Autopoison testing, including both attacks 
such as Content Injection Attacks (“(attempting to promote a brand name in model 
responses”) and Refusal Attacks (“always making the model refuse to respond”) that 
can be accomplished with this approach.

https://stanford-cs324.github.io/winter2022/lectures/data/
https://www.csoonline.com/article/3613932/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://atlas.mitre.org/studies/AML.CS0009/
https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/
https://kai-greshake.de/posts/inject-my-pdf/
https://towardsdatascience.com/backdoor-attacks-on-language-models-can-we-trust-our-models-weights-73108f9dcb1f
https://arxiv.org/abs/2305.00944
https://arxiv.org/abs/2306.04959
https://softwarecrisis.dev/letters/the-poisoning-of-chatgpt/
https://www.youtube.com/watch?v=h9jf1ikcGyk
https://cyclonedx.org/capabilities/mlbom/
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/blob/main/1_0_vulns/PromptInjection.md
https://wandb.ai/ayush-thakur/Intro-RLAIF/reports/An-Introduction-to-Training-LLMs-Using-Reinforcement-Learning-From-Human-Feedback-RLHF---VmlldzozMzYyNjcy
https://www.anthropic.com/index/red-teaming-language-models-to-reduce-harms-methods-scaling-behaviors-and-lessons-learned
https://github.com/leondz/garak
https://github.com/azshue/AutoPoison
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LLM04: Model Denial of Service

An attacker interacts with an LLM in a method that consumes an exceptionally high 
amount of resources, which results in a decline in the quality of service for them and other 
users, as well as potentially incurring high resource costs. Furthermore, an emerging 
major security concern is the possibility of an attacker interfering with or manipulating the 
context window of an LLM. This issue is becoming more critical due to the increasing use 
of LLMs in various applications, their intensive resource utilization, the unpredictability of 
user input, and a general unawareness among developers regarding this vulnerability. In 
LLMs, the context window represents the maximum length of text the model can manage, 
covering both input and output. It's a crucial characteristic of LLMs as it dictates the 
complexity of language patterns the model can understand and the size of the text it can 
process at any given time. The size of the context window is defined by the model's 
architecture and can differ between models.

�� Posing queries that lead to recurring resource usage through high-volume generation 
of tasks in a queue, e.g. with LangChain or AutoGPT�

�� Sending unusually resource-consuming queries that use unusual orthography or 
sequences�

�� Continuous input overflow: An attacker sends a stream of input to the LLM that 
exceeds its context window, causing the model to consume excessive computational 
resources�

�� Repetitive long inputs: The attacker repeatedly sends long inputs to the LLM, each 
exceeding the context window�

�� Recursive context expansion: The attacker constructs input that triggers recursive 
context expansion, forcing the LLM to repeatedly expand and process the context 
window�

�� Variable-length input flood: The attacker floods the LLM with a large volume of 
variable-length inputs, where each input is carefully crafted to just reach the limit of the 
context window. This technique aims to exploit any inefficiencies in processing 
variable-length inputs, straining the LLM and potentially causing it to become 
unresponsive.

Common Examples of Vulnerability

Description



OWASP Top 10 for LLM Applications v1.1|

14OWASP.org

�� Implement input validation and sanitization to ensure user input adheres to defined 
limits and filters out any malicious content�

�� Cap resource use per request or step, so that requests involving complex parts 
execute more slowly�

�� Enforce API rate limits to restrict the number of requests an individual user or IP 
address can make within a specific timeframe�

�� Limit the number of queued actions and the number of total actions in a system 
reacting to LLM responses�

�� Continuously monitor the resource utilization of the LLM to identify abnormal spikes or 
patterns that may indicate a DoS attack�

�� Set strict input limits based on the LLM's context window to prevent overload and 
resource exhaustion�

�� Promote awareness among developers about potential DoS vulnerabilities in LLMs and 
provide guidelines for secure LLM implementation.

Prevention and Mitigation Strategies

�� An attacker repeatedly sends multiple difficult and costly requests to a hosted model 
leading to worse service for other users and increased resource bills for the host�

�� A piece of text on a webpage is encountered while an LLM-driven tool is collecting 
information to respond to a benign query. This leads to the tool making many more 
web page requests, resulting in large amounts of resource consumption�

�� An attacker continuously bombards the LLM with input that exceeds its context 
window. The attacker may use automated scripts or tools to send a high volume of 
input, overwhelming the LLM's processing capabilities. As a result, the LLM consumes 
excessive computational resources, leading to a significant slowdown or complete 
unresponsiveness of the system�

�� An attacker sends a series of sequential inputs to the LLM, with each input designed to 
be just below the context window's limit. By repeatedly submitting these inputs, the 
attacker aims to exhaust the available context window capacity. As the LLM struggles 
to process each input within its context window, system resources become strained, 
potentially resulting in degraded performance or a complete denial of service�

�� An attacker leverages the LLM's recursive mechanisms to trigger context expansion 
repeatedly. By crafting input that exploits the recursive behavior of the LLM, the 
attacker forces the model to repeatedly expand and process the context window, 
consuming significant computational resources. This attack strains the system and 
may lead to a DoS condition, making the LLM unresponsive or causing it to crash.

Example Attack Scenarios
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�� LangChain max_iterations: hwchase17 on Twitte�
�� Sponge Examples: Energy-Latency Attacks on Neural Networks: Arxiv White Pape�
�� OWASP DOS Attack: OWAS�
�� Learning From Machines: Know Thy Context: Luke Bechte�
�� Sourcegraph Security Incident on API Limits Manipulation and DoS Attack : 

Sourcegraph

Reference Links

�� An attacker floods the LLM with a large volume of variable-length inputs, carefully 
crafted to approach or reach the context window's limit. By overwhelming the LLM with 
inputs of varying lengths, the attacker aims to exploit any inefficiencies in processing 
variable-length inputs. This flood of inputs puts an excessive load on the LLM's 
resources, potentially causing performance degradation and hindering the system's 
ability to respond to legitimate requests�

�� While DoS attacks commonly aim to overwhelm system resources, they can also 
exploit other aspects of system behavior, such as API limitations. For example, in a 
recent Sourcegraph security incident, the malicious actor employed a leaked admin 
access token to alter API rate limits, thereby potentially causing service disruptions by 
enabling abnormal levels of request volumes.

https://twitter.com/hwchase17/status/1608467493877579777
https://arxiv.org/abs/2006.03463
https://owasp.org/www-community/attacks/Denial_of_Service
https://lukebechtel.com/blog/lfm-know-thy-context
https://about.sourcegraph.com/blog/security-update-august-2023
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LLM05: Supply Chain Vulnerabilities

The supply chain in LLMs can be vulnerable, impacting the integrity of training data, ML 
models, and deployment platforms. These vulnerabilities can lead to biased outcomes, 
security breaches, or even complete system failures. Traditionally, vulnerabilities are 
focused on software components, but Machine Learning extends this with the pre-trained 
models and training data supplied by third parties susceptible to tampering and poisoning 
attacks.



Finally, LLM Plugin extensions can bring their own vulnerabilities. These are described in 
LLM07 - Insecure Plugin Design, which covers writing LLM Plugins and provides helpful 
information to evaluate third-party plugins.

�� Traditional third-party package vulnerabilities, including outdated or deprecated 
components�

�� Using a vulnerable pre-trained model for fine-tuning�
�� Use of poisoned crowd-sourced data for training�
�� Using outdated or deprecated models that are no longer maintained leads to security 

issues�
�� Unclear T&Cs and data privacy policies of the model operators lead to the application's 

sensitive data being used for model training and subsequent sensitive information 
exposure. This may also apply to risks from using copyrighted material by the model 
supplier.

�� Carefully vet data sources and suppliers, including T&Cs and their privacy policies, only 
using trusted suppliers. Ensure adequate and independently audited security is in 
place and that model operator policies align with your data protection policies, i.e., 
your data is not used for training their models; similarly, seek assurances and legal 
mitigations against using copyrighted material from model maintainers�

�� Only use reputable plugins and ensure they have been tested for your application 
requirements. LLM-Insecure Plugin Design provides information on the LLM-aspects of 
Insecure Plugin design you should test against to mitigate risks from using third-party 
plugins.

Common Examples of Vulnerability

Prevention and Mitigation Strategies

Description

https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/blob/main/1_1_vulns/InsecurePluginDesign.md
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�� Understand and apply the mitigations found in the OWASP Top Ten's A06:2021 – 
Vulnerable and Outdated Components. This includes vulnerability scanning, 
management, and patching components. For development environments with access 
to sensitive data, apply these controls in those environments, too�

�� Maintain an up-to-date inventory of components using a Software Bill of Materials 
(SBOM) to ensure you have an up-to-date, accurate, and signed inventory, preventing 
tampering with deployed packages. SBOMs can be used to detect and alert for new, 
zero-date vulnerabilities quickly�

�� At the time of writing, SBOMs do not cover models, their artifacts, and datasets. If your 
LLM application uses its own model, you should use MLOps best practices and 
platforms offering secure model repositories with data, model, and experiment 
tracking�

�� You should also use model and code signing when using external models and 
suppliers�

�� Anomaly detection and adversarial robustness tests on supplied models and data can 
help detect tampering and poisoning as discussed in Training Data Poisoning; ideally, 
this should be part of MLOps pipelines; however, these are emerging techniques and 
may be easier to implement as part of red teaming exercises�

�� Implement sufficient monitoring to cover component and environment vulnerabilities 
scanning, use of unauthorized plugins, and out-of-date components, including the 
model and its artifacts�

�� Implement a patching policy to mitigate vulnerable or outdated components. Ensure 
the application relies on a maintained version of APIs and the underlying model�

��� Regularly review and audit supplier Security and Access, ensuring no changes in their 
security posture or T&Cs.

�� An attacker exploits a vulnerable Python library to compromise a system. This 
happened in the first Open AI data breach�

�� An attacker provides an LLM plugin to search for flights, generating fake links that lead 
to scamming users�

�� An attacker exploits the PyPi package registry to trick model developers into 
downloading a compromised package and exfiltrating data or escalating privilege in a 
model development environment. This was an actual attack�

�� An attacker poisons a publicly available pre-trained model specializing in economic 
analysis and social research to create a back door that generates misinformation and 
fake news. They deploy it on a model marketplace (e.g., Hugging Face) for victims to 
use�

�� An attacker poisons publicly available datasets to help create a back door when fine-
tuning models. The back door subtly favors certain companies in different markets�

�� A compromised employee of a supplier (outsourcing developer, hosting company, etc.) 
exfiltrates data, model, or code stealing IP.

Example Attack Scenarios

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/blob/main/1_0_vulns/Training_Data_Poisoning.md


OWASP Top 10 for LLM Applications v1.1|

18OWASP.org

�� ChatGPT Data Breach Confirmed as Security Firm Warns of Vulnerable Component 
Exploitation: Security Wee�

�� Plugin review process: OpenA�
�� Compromised PyTorch-nightly dependency chain: PyTorc�
�� PoisonGPT: How we hid a lobotomized LLMs on Hugging Face to spread fake news: 

Mithril Securit�
�� Army looking at the possibility of ‘AI BOMs: Defense Scoo�
�� Failure Modes in Machine Learning: Microsof�
�� ML Supply Chain Compromise: MITR�
�� Transferability in Machine Learning: from Phenomena to Black-Box Attacks using 

Adversarial Samples: Cornell Universit�
�� BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain: 

Cornell Universit�
��� VirusTotal Poisoning: MITRE

Reference Links

�� An LLM operator changes its T&Cs and Privacy Policy to require an explicit opt out 
from using application data for model training, leading to the memorization of 
sensitive data.

https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://platform.openai.com/docs/plugins/review
https://pytorch.org/blog/compromised-nightly-dependency/
https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/
https://defensescoop.com/2023/05/25/army-looking-at-the-possibility-of-ai-boms-bill-of-materials/
https://learn.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
https://atlas.mitre.org/techniques/AML.T0010/
https://arxiv.org/pdf/1605.07277.pdf
https://arxiv.org/pdf/1605.07277.pdf
https://arxiv.org/abs/1708.06733
https://atlas.mitre.org/studies/AML.CS0002
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LLM06: Sensitive Information Disclosure

LLM applications have the potential to reveal sensitive information, proprietary algorithms, 
or other confidential details through their output. This can result in unauthorized access to 
sensitive data, intellectual property, privacy violations, and other security breaches. It is 
important for consumers of LLM applications to be aware of how to safely interact with 
LLMs and identify the risks associated with unintentionally inputting sensitive data that 
may be subsequently returned by the LLM in output elsewhere.



To mitigate this risk, LLM applications should perform adequate data sanitization to 
prevent user data from entering the training model data. LLM application owners should 
also have appropriate Terms of Use policies available to make consumers aware of how 
their data is processed and the ability to opt out of having their data included in the 
training model.



The consumer-LLM application interaction forms a two-way trust boundary, where we 
cannot inherently trust the client->LLM input or the LLM->client output. It is important to 
note that this vulnerability assumes that certain prerequisites are out of scope, such as 
threat modeling exercises, securing infrastructure, and adequate sandboxing. Adding 
restrictions within the system prompt around the types of data the LLM should return can 
provide some mitigation against sensitive information disclosure, but the unpredictable 
nature of LLMs means such restrictions may not always be honored and could be 
circumvented via prompt injection or other vectors.

�� Integrate adequate data sanitization and scrubbing techniques to prevent user data 
from entering the training model data�

�� Implement robust input validation and sanitization methods to identify and filter out 
potential malicious inputs to prevent the model from being poisoned.

Prevention and Mitigation Strategies

�� Incomplete or improper filtering of sensitive information in the LLM’s responses�
�� Overfitting or memorization of sensitive data in the LLM’s training process�
�� Unintended disclosure of confidential information due to LLM misinterpretation, lack of 

data scrubbing methods or errors.

Common Examples of Vulnerability

Description
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�� When enriching the model with data and if fine-tuning a model: (I.E, data fed into the 
model before or during deployment�
�� Anything that is deemed sensitive in the fine-tuning data has the potential to be 

revealed to a user. Therefore, apply the rule of least privilege and do not train the 
model on information that the highest-privileged user can access which may be 
displayed to a lower-privileged user�

�� Access to external data sources (orchestration of data at runtime) should be limited�
�� Apply strict access control methods to external data sources and a rigorous approach 

to maintaining a secure supply chain.

�� AI data leak crisis: New tool prevents company secrets from being fed to ChatGPT: 
Fox Busines�

�� Lessons learned from ChatGPT’s Samsung leak: Cybernew�
�� Cohere - Terms Of Use: Coher�
�� A threat modeling example: AI Villag�
�� OWASP AI Security and Privacy Guide: OWASP AI Security & Privacy Guid�
�� Ensuring the Security of Large Language Models: Experts Exchange

Reference Links

�� Unsuspecting legitimate user A is exposed to certain other user data via the LLM when 
interacting with the LLM application in a non-malicious manner�

�� User A targets a well-crafted set of prompts to bypass input filters and sanitization 
from the LLM to cause it to reveal sensitive information (PII) about other users of the 
application�

�� Personal data such as PII is leaked into the model via training data due to either 
negligence from the user themselves, or the LLM application. This case could increase 
the risk and probability of scenario 1 or 2 above.

Example Attack Scenarios

https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/wiki/Definitions
https://www.foxbusiness.com/politics/ai-data-leak-crisis-prevent-company-secrets-chatgpt
https://cybernews.com/security/chatgpt-samsung-leak-explained-lessons/
https://cohere.com/terms-of-use
https://aivillage.org/large%20language%20models/threat-modeling-llm/
https://owasp.org/www-project-ai-security-and-privacy-guide/
https://www.experts-exchange.com/articles/38220/Ensuring-the-Security-of-Large-Language-Models-Strategies-and-Best-Practices.html


OWASP Top 10 for LLM Applications v1.1|

21OWASP.org

LLM07: Insecure Plugin Design

LLM plugins are extensions that, when enabled, are called automatically by the model 
during user interactions. The model integration platform drives them, and the application 
may have no control over the execution, especially when the model is hosted by another 
party. Furthermore, plugins are likely to implement free-text inputs from the model with no 
validation or type-checking to deal with context-size limitations. This allows a potential 
attacker to construct a malicious request to the plugin, which could result in a wide range 
of undesired behaviors, up to and including remote code execution.



The harm of malicious inputs often depends on insufficient access controls and the 
failure to track authorization across plugins. Inadequate access control allows a plugin to 
blindly trust other plugins and assume that the end user provided the inputs. Such 
inadequate access control can enable malicious inputs to have harmful consequences 
ranging from data exfiltration, remote code execution, and privilege escalation.



This item focuses on creating LLM plugins rather than third-party plugins, which LLM-
Supply-Chain-Vulnerabilities cover.

�� A plugin accepts all parameters in a single text field instead of distinct input 
parameters�

�� A plugin accepts configuration strings instead of parameters that can override entire 
configuration settings�

�� A plugin accepts raw SQL or programming statements instead of parameters�
�� Authentication is performed without explicit authorization to a particular plugin�
�� A plugin treats all LLM content as being created entirely by the user and performs any 

requested actions without requiring additional authorization.

�� Plugins should enforce strict parameterized input wherever possible and include type 
and range checks on inputs. When this is not possible, a second layer of typed calls 
should be introduced, parsing requests and applying validation and sanitization. When 
freeform input must be accepted because of application semantics, it should be 
carefully inspected to ensure no potentially harmful methods are being called�

�� Plugin developers should apply OWASP’s recommendations in ASVS (Application 
Security Verification Standard) to ensure adequate input validation and sanitization.

Common Examples of Vulnerability

Prevention and Mitigation Strategies

Description
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�� Plugins should be inspected and tested thoroughly to ensure adequate validation. Use 
Static Application Security Testing (SAST) scans and Dynamic and Interactive 
application testing (DAST, IAST) in development pipelines�

�� Plugins should be designed to minimize the impact of any insecure input parameter 
exploitation following the OWASP ASVS Access Control Guidelines. This includes 
least-privilege access control, exposing as little functionality as possible while still 
performing its desired function�

�� Plugins should use appropriate authentication identities, such as OAuth2, to apply 
effective authorization and access control. Additionally, API Keys should be used to 
provide context for custom authorization decisions that reflect the plugin route rather 
than the default interactive user�

�� Require manual user authorization and confirmation of any action taken by sensitive 
plugins�

�� Plugins are, typically, REST APIs, so developers should apply the recommendations 
found in OWASP Top 10 API Security Risks – 2023 to minimize generic vulnerabilities.

�� A plugin accepts a base URL and instructs the LLM to combine the URL with a query to 
obtain weather forecasts which are included in handling the user request. A malicious 
user can craft a request such that the URL points to a domain they control, which 
allows them to inject their own content into the LLM system via their domain�

�� A plugin accepts a free-form input into a single field that it does not validate. An 
attacker supplies carefully crafted payloads to perform reconnaissance from error 
messages. It then exploits known third-party vulnerabilities to execute code and 
perform data exfiltration or privilege escalation�

�� A plugin used to retrieve embeddings from a vector store accepts configuration 
parameters as a connection string without any validation. This allows an attacker to 
experiment and access other vector stores by changing names or host parameters and 
exfiltrate embeddings they should not have access to�

�� A plugin accepts SQL WHERE clauses as advanced filters, which are then appended to 
the filtering SQL. This allows an attacker to stage a SQL attack�

�� An attacker uses indirect prompt injection to exploit an insecure code management 
plugin with no input validation and weak access control to transfer repository 
ownership and lock out the user from their repositories.

Example Attack Scenarios
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�� OpenAI ChatGPT Plugins: ChatGPT Developer’s Guid�
�� OpenAI ChatGPT Plugins - Plugin Flow: OpenAI Documentatio�
�� OpenAI ChatGPT Plugins - Authentication: OpenAI Documentatio�
�� OpenAI Semantic Search Plugin Sample: OpenAI Githu�
�� Plugin Vulnerabilities: Visit a Website and Have Your Source Code Stolen: Embrace 

The Re�
�� ChatGPT Plugin Exploit Explained: From Prompt Injection to Accessing Private Data 

Embrace The Re�
�� OWASP ASVS - 5 Validation, Sanitization and Encoding: OWASP AASV�
�� OWASP ASVS 4.1 General Access Control Design: OWASP AASV�
�� OWASP Top 10 API Security Risks – 2023: OWASP

Reference Links

https://platform.openai.com/docs/plugins/introduction
https://platform.openai.com/docs/plugins/introduction/plugin-flow
https://platform.openai.com/docs/plugins/authentication/service-level
https://github.com/openai/chatgpt-retrieval-plugin
https://embracethered.com/blog/posts/2023/chatgpt-plugin-vulns-chat-with-code/
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://owasp-aasvs4.readthedocs.io/en/latest/V5.html#validation-sanitization-and-encoding
https://owasp-aasvs4.readthedocs.io/en/latest/V4.1.html#general-access-control-design
https://owasp.org/API-Security/editions/2023/en/0x11-t10/


OWASP Top 10 for LLM Applications v1.1|

24OWASP.org

LLM08: Excessive Agency

An LLM-based system is often granted a degree of agency by its developer - the ability to 
interface with other systems and undertake actions in response to a prompt. The decision 
over which functions to invoke may also be delegated to an LLM 'agent' to dynamically 
determine based on input prompt or LLM output.



Excessive Agency is the vulnerability that enables damaging actions to be performed in 
response to unexpected/ambiguous outputs from an LLM (regardless of what is causing 
the LLM to malfunction; be it hallucination/confabulation, direct/indirect prompt injection, 
malicious plugin, poorly-engineered benign prompts, or just a poorly-performing model). 
The root cause of Excessive Agency is typically one or more of: excessive functionality, 
excessive permissions or excessive autonomy. This differs from Insecure Output Handling 
which is concerned with insufficient scrutiny of LLM outputs.



Excessive Agency can lead to a broad range of impacts across the confidentiality, integrity 
and availability spectrum, and is dependent on which systems an LLM-based app is able 
to interact with.

�� Excessive Functionality: An LLM agent has access to plugins which include functions 
that are not needed for the intended operation of the system. For example, a developer 
needs to grant an LLM agent the ability to read documents from a repository, but the 
3rd-party plugin they choose to use also includes the ability to modify and delete 
documents�

�� Excessive Functionality: A plugin may have been trialed during a development phase 
and dropped in favor of a better alternative, but the original plugin remains available to 
the LLM agent�

�� Excessive Functionality: An LLM plugin with open-ended functionality fails to properly 
filter the input instructions for commands outside what's necessary for the intended 
operation of the application. E.g., a plugin to run one specific shell command fails to 
properly prevent other shell commands from being executed�

�� Excessive Permissions: An LLM plugin has permissions on other systems that are not 
needed for the intended operation of the application. E.g., a plugin intended to read 
data connects to a database server using an identity that not only has SELECT 
permissions, but also UPDATE, INSERT and DELETE permissions.


Common Examples of Vulnerability

Description
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�� Excessive Permissions: An LLM plugin that is designed to perform operations on 
behalf of a user accesses downstream systems with a generic high-privileged identity. 
E.g., a plugin to read the current user's document store connects to the document 
repository with a privileged account that has access to all users' files�

�� Excessive Autonomy: An LLM-based application or plugin fails to independently verify 
and approve high-impact actions. E.g., a plugin that allows a user's documents to be 
deleted performs deletions without any confirmation from the user.

The following actions can prevent Excessive Agency�

�� Limit the plugins/tools that LLM agents are allowed to call to only the minimum 
functions necessary. For example, if an LLM-based system does not require the ability 
to fetch the contents of a URL then such a plugin should not be offered to the LLM 
agent�

�� Limit the functions that are implemented in LLM plugins/tools to the minimum 
necessary. For example, a plugin that accesses a user's mailbox to summarise emails 
may only require the ability to read emails, so the plugin should not contain other 
functionality such as deleting or sending messages�

�� Avoid open-ended functions where possible (e.g., run a shell command, fetch a URL, 
etc.) and use plugins/tools with more granular functionality. For example, an LLM-
based app may need to write some output to a file. If this were implemented using a 
plugin to run a shell function then the scope for undesirable actions is very large (any 
other shell command could be executed). A more secure alternative would be to build 
a file-writing plugin that could only support that specific functionality�

�� Limit the permissions that LLM plugins/tools are granted to other systems to the 
minimum necessary in order to limit the scope of undesirable actions. For example, an 
LLM agent that uses a product database in order to make purchase recommendations 
to a customer might only need read access to a 'products' table; it should not have 
access to other tables, nor the ability to insert, update or delete records. This should be 
enforced by applying appropriate database permissions for the identity that the LLM 
plugin uses to connect to the database�

�� Track user authorization and security scope to ensure actions taken on behalf of a 
user are executed on downstream systems in the context of that specific user, and 
with the minimum privileges necessary. For example, an LLM plugin that reads a user's 
code repo should require the user to authenticate via OAuth and with the minimum 
scope required�

�� Utilise human-in-the-loop control to require a human to approve all actions before they 
are taken. This may be implemented in a downstream system (outside the scope of 
the LLM application) or within the LLM plugin/tool itself. For example, an LLM-based 
app that creates and posts social media content on behalf of a user should include a 
user approval routine within the plugin/tool/API that implements the 'post' operation.


Prevention and Mitigation Strategies
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�� Implement authorization in downstream systems rather than relying on an LLM to 
decide if an action is allowed or not. When implementing tools/plugins enforce the 
complete mediation principle so that all requests made to downstream systems via 
the plugins/tools are validated against security policies.



The following options will not prevent Excessive Agency, but can limit the level of damage 
caused�

�� Log and monitor the activity of LLM plugins/tools and downstream systems to identify 
where undesirable actions are taking place, and respond accordingly�

�� Implement rate-limiting to reduce the number of undesirable actions that can take 
place within a given time period, increasing the opportunity to discover undesirable 
actions through monitoring before significant damage can occur.

An LLM-based personal assistant app is granted access to an individual’s mailbox via a 
plugin in order to summarise the content of incoming emails. To achieve this functionality, 
the email plugin requires the ability to read messages, however the plugin that the system 
developer has chosen to use also contains functions for sending messages. The LLM is 
vulnerable to an indirect prompt injection attack, whereby a maliciously-crafted incoming 
email tricks the LLM into commanding the email plugin to call the 'send message' function 
to send spam from the user's mailbox. This could be avoided by: (a) eliminating excessive 
functionality by using a plugin that only offered mail-reading capabilities, (b) eliminating 
excessive permissions by authenticating to the user's email service via an OAuth session 
with a read-only scope, and/or (c) eliminating excessive autonomy by requiring the user to 
manually review and hit 'send' on every mail drafted by the LLM plugin. Alternatively, the 
damage caused could be reduced by implementing rate limiting on the mail-sending 
interface.

�� Embrace the Red: Confused Deputy Problem: Embrace The Re�
�� NeMo-Guardrails: Interface guidelines: NVIDIA Githu�
�� LangChain: Human-approval for tools: Langchain Documentatio�
�� Simon Willison: Dual LLM Pattern: Simon Willison

Reference Links

Example Attack Scenario

https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/security/guidelines.md
https://python.langchain.com/docs/modules/agents/tools/how_to/human_approval
https://simonwillison.net/2023/Apr/25/dual-llm-pattern/
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LLM09: Overreliance

�� LLM provides inaccurate information as a response while stating it in a fashion 
implying it is highly authoritative. The overall system is designed without proper 
checks and balances to handle this and the information misleads the user in a way 
that leads to har�

�� LLM suggests insecure or faulty code, leading to vulnerabilities when incorporated into 
a software system without proper oversight or verification.

Prevention and Mitigation Strategies

Common Examples of Vulnerability

Overreliance can occur when an LLM produces erroneous information and provides it in 
an authoritative manner. While LLMs can produce creative and informative content, they 
can also generate content that is factually incorrect, inappropriate or unsafe. This is 
referred to as hallucination or confabulation. When people or systems trust this 
information without oversight or confirmation it can result in a security breach, 
misinformation, miscommunication, legal issues, and reputational damage.



LLM-generated source code can introduce unnoticed security vulnerabilities. This poses a 
significant risk to the operational safety and security of applications. These risks show the 
importance of rigorous review processes, with�

� Oversigh�
� Continuous validation mechanism�
� Disclaimers on risk

Description

�� Regularly monitor and review the LLM outputs. Use self-consistency or voting 
techniques to filter out inconsistent text. Comparing multiple model responses for a 
single prompt can better judge the quality and consistency of output�

�� Cross-check the LLM output with trusted external sources. This additional layer of 
validation can help ensure the information provided by the model is accurate and 
reliable.
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�� Enhance the model with fine-tuning or embeddings to improve output quality. Generic 
pre-trained models are more likely to produce inaccurate information compared to 
tuned models in a particular domain. Techniques such as prompt engineering, 
parameter efficient tuning (PET), full model tuning, and chain of thought prompting can 
be employed for this purpose�

�� Implement automatic validation mechanisms that can cross-verify the generated 
output against known facts or data. This can provide an additional layer of security and 
mitigate the risks associated with hallucinations�

�� Break down complex tasks into manageable subtasks and assign them to different 
agents. This not only helps in managing complexity, but it also reduces the chances of 
hallucinations as each agent can be held accountable for a smaller task�

�� Clearly communicate the risks and limitations associated with using LLMs. This 
includes potential for information inaccuracies, and other risks. Effective risk 
communication can prepare users for potential issues and help them make informed 
decisions�

�� Build APIs and user interfaces that encourage responsible and safe use of LLMs. This 
can involve measures such as content filters, user warnings about potential 
inaccuracies, and clear labeling of AI-generated content�

�� When using LLMs in development environments, establish secure coding practices and 
guidelines to prevent the integration of possible vulnerabilities.

�� A news organization heavily uses an LLM to generate news articles. A malicious actor 
exploits this over-reliance, feeding the LLM misleading information, and causing the 
spread of disinformation�

�� The AI unintentionally plagiarizes content, leading to copyright issues and decreased 
trust in the organization�

�� A software development team utilizes an LLM system to expedite the coding process. 
Over-reliance on the AI's suggestions introduces security vulnerabilities in the 
application due to insecure default settings or recommendations inconsistent with 
secure coding practices�

�� A software development firm uses an LLM to assist developers. The LLM suggests a 
non-existent code library or package, and a developer, trusting the AI, unknowingly 
integrates a malicious package into the firm's software. This highlights the importance 
of cross-checking LLM suggestions, especially when involving third-party code or 
libraries.

Example Attack Scenario
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�� Understanding LLMs Hallucinations: Mediu�
�� How Should Companies Communicate the Risks of Large Language Models to 

Users?: Tech Policy Pres�
�� A news site used AI to write articles. It was a journalistic disaster: The Washington 

Pos�
�� AI Hallucinations: Package Risk: Vulca�
�� How to Reduce the Hallucinations from Large Language Models: The New Stac�
�� Practical Steps to Reduce Hallucination: Designing With Machine Learning

Reference Links

https://towardsdatascience.com/llm-hallucinations-ec831dcd7786
https://techpolicy.press/how-should-companies-communicate-the-risks-of-large-language-models-to-users/
https://techpolicy.press/how-should-companies-communicate-the-risks-of-large-language-models-to-users/
https://www.washingtonpost.com/media/2023/01/17/cnet-ai-articles-journalism-corrections/
https://vulcan.io/blog/ai-hallucinations-package-risk
https://thenewstack.io/how-to-reduce-the-hallucinations-from-large-language-models/
https://newsletter.victordibia.com/p/practical-steps-to-reduce-hallucination
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LLM10: Model Theft

This entry refers to the unauthorized access and exfiltration of LLM models by malicious 
actors or APTs. This arises when the proprietary LLM models (being valuable intellectual 
property), are compromised, physically stolen, copied or weights and parameters are 
extracted to create a functional equivalent. The impact of LLM model theft can include 
economic and brand reputation loss, erosion of competitive advantage, unauthorized 
usage of the model or unauthorized access to sensitive information contained within the 
model.



The theft of LLMs represents a significant security concern as language models become 
increasingly powerful and prevalent. Organizations and researchers must prioritize robust 
security measures to protect their LLM models, ensuring the confidentiality and integrity 
of their intellectual property. Employing a comprehensive security framework that includes 
access controls, encryption, and continuous monitoring is crucial in mitigating the risks 
associated with LLM model theft and safeguarding the interests of both individuals and 
organizations relying on LLM.

�� An attacker exploits a vulnerability in a company's infrastructure to gain unauthorized 
access to their LLM model repository via misconfiguration in their network or 
application security settings�

�� Use a centralized ML Model Inventory or Registry for ML models used in production. 
Having a centralized model registry prevents unauthorized access to ML Models via 
access controls, authentication, and monitoring/logging capability which are good 
foundations for governance. Having a centralized repository is also beneficial for 
collecting data about algorithms used by the models for the purposes of compliance, 
risk assessments, and risk mitigation�

�� An insider threat scenario where a disgruntled employee leaks model or related 
artifacts�

�� An attacker queries the model API using carefully crafted inputs and prompt injection 
techniques to collect a sufficient number of outputs to create a shadow model�

�� A malicious attacker is able to bypass input filtering techniques of the LLM to perform 
a side-channel attack and ultimately harvest model weights and architecture 
information to a remote controlled resource.


Common Examples of Vulnerability

Description
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�� The attack vector for model extraction involves querying the LLM with a large number 
of prompts on a particular topic. The outputs from the LLM can then be used to fine-
tune another model. However, there are a few things to note about this attack�

� The attacker must generate a large number of targeted prompts. If the prompts are 
not specific enough, the outputs from the LLM will be useless�

� The outputs from LLMs can sometimes contain hallucinated answers meaning the 
attacker may not be able to extract the entire model as some of the outputs can be 
nonsensical�

� It is not possible to replicate an LLM 100% through model extraction. However, 
the attacker will be able to replicate a partial model�

�� The attack vector for functional model replication involves using the target model via 
prompts to generate synthetic training data (an approach called "self-instruct") to then 
use it and fine-tune another foundational model to produce a functional equivalent. 
This bypasses the limitations of traditional query-based extraction used in Example 5 
and has been successfully used in research of using an LLM to train another LLM. 
Although in the context of this research, model replication is not an attack. The 
approach could be used by an attacker to replicate a proprietary model with a public 
API.



Use of a stolen model, as a shadow model, can be used to stage adversarial attacks 
including unauthorized access to sensitive information contained within the model or 
experiment undetected with adversarial inputs to further stage advanced prompt 
injections.

�� Implement strong access controls (E.G., RBAC and rule of least privilege) and strong 
authentication mechanisms to limit unauthorized access to LLM model repositories 
and training environments�
�� This is particularly true for the first three common examples, which could cause 

this vulnerability due to insider threats, misconfiguration, and/or weak security 
controls about the infrastructure that houses LLM models, weights and architecture 
in which a malicious actor could infiltrate from insider or outside the environment�

�� Supplier management tracking, verification and dependency vulnerabilities are 
important focus topics to prevent exploits of supply-chain attacks�

�� Restrict the LLM's access to network resources, internal services, and APIs�
�� This is particularly true for all common examples as it covers insider risk and 

threats, but also ultimately controls what the LLM application "has access to" and 
thus could be a mechanism or prevention step to prevent side-channel attacks�

�� Regularly monitor and audit access logs and activities related to LLM model 
repositories to detect and respond to any suspicious or unauthorized behavior 
promptly.

Prevention and Mitigation Strategies
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�� An attacker exploits a vulnerability in a company's infrastructure to gain unauthorized 
access to their LLM model repository. The attacker proceeds to exfiltrate valuable LLM 
models and uses them to launch a competing language processing service or extract 
sensitive information, causing significant financial harm to the original company�

�� A disgruntled employee leaks model or related artifacts. The public exposure of this 
scenario increases knowledge to attackers for gray box adversarial attacks or 
alternatively directly steal the available property�

�� An attacker queries the API with carefully selected inputs and collects sufficient 
number of outputs to create a shadow model�

�� A security control failure is present within the supply-chain and leads to data leaks of 
proprietary model information�

�� A malicious attacker bypasses input filtering techniques and preambles of the LLM to 
perform a side-channel attack and retrieve model information to a remote controlled 
resource under their control.

�� Automate MLOps deployment with governance and tracking and approval workflows to 
tighten access and deployment controls within the infrastructure�

�� Implement controls and mitigation strategies to mitigate and|or reduce risk of prompt 
injection techniques causing side-channel attacks�

�� Rate Limiting of API calls where applicable and|or filters to reduce risk of data 
exfiltration from the LLM applications, or implement techniques to detect (E.G., DLP) 
extraction activity from other monitoring systems�

�� Implement adversarial robustness training to help detect extraction queries and tighten 
physical security measures�

�� Implement a watermarking framework into the embedding and detection stages of an 
LLMs lifecyle.

�� Meta’s powerful AI language model has leaked online: The Verg�
�� Runaway LLaMA | How Meta's LLaMA NLP model leaked: DeepLearning.a�
�� AML.TA0000 ML Model Access: MITRE ATLA�
�� I Know What You See: Cornell Universit�
�� D-DAE: Defense-Penetrating Model Extraction Attacks: IEE�
�� A Comprehensive Defense Framework Against Model Extraction Attacks: IEE�
�� Alpaca: A Strong, Replicable Instruction-Following Model: Stanford Universit�
�� How Watermarking Can Help Mitigate The Potential Risks Of LLMs?: KD Nuggets

Reference Links

Example Attack Scenario

https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.deeplearning.ai/the-batch/how-metas-llama-nlp-model-leaked/
https://atlas.mitre.org/tactics/AML.TA0000
https://arxiv.org/pdf/1803.05847.pdf
https://www.computer.org/csdl/proceedings-article/sp/2023/933600a432/1He7YbsiH4c
https://ieeexplore.ieee.org/document/10080996
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://www.kdnuggets.com/2023/03/watermarking-help-mitigate-potential-risks-llms.html
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